
Forensics of High-Quality JPEG Images
with Color Subsampling

Matthias Carnein
University of Münster

Email: matthias.carnein@uni-muenster.de

Pascal Schöttle
Universität Innsbruck

Email: pascal.schoettle@uibk.ac.at

Rainer Böhme
Universität Innsbruck

Email: rainer.boehme@uibk.ac.at

Abstract—Detecting prior compression is an essential task in
image forensics and can be used to detect forgery in digital
images. Many approaches focus on grayscale images and assume
compressions with a low quality factor which often leave visible
artifacts in the image. In practice, however, color images and high
quality compression are much more relevant and widespread.
Block convergence has been proposed to estimate the number
of JPEG compressions with quality factor 100 for grayscale
images and has been shown to produce accurate results [1].
This paper extends block convergence to the more relevant
case of color images where chrominance subsampling and color
conversion make the estimation more complex. By observing
block convergence for macro-blocks over multiple recompressions
we are able to produce accurate estimates for color images.
Oftentimes block convergence for color images enables similar
accuracy and allows to detect more recompressions compared to
grayscale images, while maintaining a good distinction between
never and once compressed images.

I. INTRODUCTION

Uncovering the compression history of an image is an
important part in image forensics. It can serve as an indi-
cator of how often an image has been saved with an image
processing software and can be used to analyze whether an
image has been tampered with. One of the most popular image
formats is JPEG, standardized in 1992 [2]. Various methods
have been developed to detect prior JPEG compression. Most
of these methods aim to detect JPEG compression for grayscale
images and quality factors lower than Q = 100. In practice,
however, color images are much more widespread and with the
decreasing cost of bandwidth and storage, high quality JPEG
compression is the predominant choice for natural images.

In 2013, block convergence has been proposed to detect the
number of JPEG-100 compressions for grayscale images [1]. It
is based on the observation that rounding during repeated JPEG
compression and decompression will cause the color values to
converge. This allows to calculate a ratio of converged blocks
and use it to estimate the number of compressions. This paper
extends the concept of block convergence to color images
where color space conversion as well as chrominance sub- and
upsampling affect the convergence path. The proposed exten-
sions are supported by experiments on a large dataset using
the state-of-the-art JPEG library libjpeg [3]. Additionally,
differences between the most common versions of libjpeg
and their implications for block convergence are analyzed.

This paper is organized as follows: Section II introduces the
concept of block convergence for grayscale images and reviews
related work. Section III discusses how block convergence can
be extended to the more complex case of color images. Then,
Section IV describes the experimental setup and experiments

performed. Section V assesses the results and evaluates the per-
formance of the proposed method. Finally, Section VI presents
approaches to identify the Discrete Cosine Transformation
(DCT) implementation and the sub- and upsampling algorithm.
Section VII concludes with a summary of the results and an
outlook.

II. RELATED WORK

Block convergence is an approach in digital image foren-
sics proposed by Lai & Böhme [1] in 2013. It can be used for
JPEG-100 carbon dating, i.e. estimating the number of times an
image has been JPEG compressed with quality factor Q = 100.

The authors in [1] define a block as stable after t iterations
if its values in t+1 equal its values in t. This allows to calculate
a ratio of stable blocks:

r = (bstable − bflat)/(btotal − bflat), (1)

where bstable denotes the number of stable blocks and btotal
denotes the total number of blocks. In addition bflat describes
the number of flat blocks. Flat blocks contain only a single
value and are always stable in t = 0. These blocks are excluded
since the amount of flat blocks varies vastly between images
and would otherwise distort the ratio [1].

The number of compressions until a block is stable seems
to follow a distribution that is widely independent of the
image content. This allows to use either natural or randomly
generated images in order to obtain a number of critical values.
These pre-calculated values can then be compared against ob-
served ratios. The interval that is associated with an observed
ratio r is likely to indicate the number of compressions.

A vast amount of the literature in image forensics is dedi-
cated to uncover the compression history of JPEG compressed
images, e. g. [4], [5], [6], [7], [8], [9]. From these, only [9]
explicitly considers the case of color, while the others either
do not mention color at all, or state that “. . . the generalization
to color images is straightforward – each color channel would
be independently subjected to the same analysis” [5]. We close
this gap in image forensics research by extending the concept
of block convergence to JPEG color images.

III. EXTENSION TO COLOR IMAGES

Block convergence for color images is more complex
than for grayscale images. For grayscale images, the conver-
gence path depends on the block-wise DCT transformation,
a possible quantization step, as well as the corresponding
inverse operations and the truncation of the spatial domain
values to [0, 255]. For color images, the convergence path is



Table I. JPEG COMPRESSION STEPS INFLUENCING THE
CONVERGENCE PATH

Color
conversion

Subsampling DCT Quantization Rounding Truncation

Grayscale – – X X X X
Color (4:4:4) X – X X X X
Color X X X X X X

additionally influenced by color space conversions, subsam-
pling and upsampling. Depending on the compression settings,
these operations cover image areas of varying size, larger
than 8 × 8, influencing how block convergence needs to be
observed. An overview of the compression steps that influence
the convergence path is given in Table I.

A. Color Images

Typically, images are represented in the RGB color space.
The first step of JPEG compression, the color space conversion,
maps colors to the Y CbCr model by using a linear transforma-
tion. Here, the Y channel represents the luminance information
and Cb, Cr the color information. Since the human eye is more
sensitive to variations in brightness than color, the chrominance
values are often stored with a lower resolution in order to
increase the compression. This step is called subsampling.
During upsampling, these values are then expanded to cover
the entire image again.

Now, let us assume that xt is a matrix of serialized blocks
after the t-th compression of an image. Then, in the columns of
xt we have the blocks for the three Y CbCr channels, i.e. each
column contains the intensity values of the Y CbCr channels of
one block. The number of columns corresponds to the number
of blocks in the image. With this notation, the remainder of
the JPEG compression and decompression can be described
by Eq. (2):

xt+1 = tr
([
CRGB

(
Hup

[
DT

(
q−1

[q (D (Hsub (CY CbCrxt)))])])]) (2)

Here, [·] denotes rounding, tr (·) truncates to the value range
and D is the 2D-DCT matrix. CY CbCr

and CRGB denote
the colour conversion matrices and Hup as well as Hsup the
matrices used for the linear filters to sub- and upsample the
image. Additionally, q denotes the quantization matrix.

Without subsampling, i. e., subsampling rate 4:4:4, the
convergence path depends only on the color conversion, the
DCT transformation and a possible quantization step as well
as the inverse decompression operations. Assuming baseline
JPEG, all of these operations are confined within, at most, an
8× 8 block covering an 8× 8 image area. Only in this special
case, the method of [1] can intuitively be extended to color
images. Similar to grayscale images, a block is considered
stable if, for all channels, none of its values change with the
next compression. We exclude all blocks bflat where at least one
channel is flat. Even though this does not necessarily mean that
the image area is flat in t = 0, these partially flat blocks show
abnormal behavior and should be excluded from the analysis.

B. Sub- and Upsampling

Various sub- and upsampling algorithms are available. The
most intuitive subsampler calculates the average of the source

1/4

(a) Simple subsampling

1

(b) Simple upsampling

Fig. 1. Simple sub- and upsampling

3/4 1/4

(a) Fancy h2v1 upsampling

9/16 3/16 1/16

(b) Fancy h2v2 upsampling

Fig. 2. Fancy upsampling in libjpeg version 6

pixel covered by the output pixel. In libjpeg this approach is
called “simple subsampling” [3]. The area that an output pixel
covers depends on the subsampling rate. For example, using
the common subsampling rate 4:2:0, only the average of a
2×2 area is stored, as shown in Figure 1(a). The corresponding
“simple upsampler” merely replicates the source pixel to cover
all output pixels again, as shown in Figure 1(b). This approach
is typically referred to as a box filter. Since each chrominance
pixel represents a 2 × 2 area, each transformation performed
on a chrominance block now affects a 16 × 16 macro-block.
Then, the number of columns in xt has to be adapted to the
macro-block-size instead of the original block-size and block
convergence needs to be analyzed on a macro-block level.
This concept can be adapted to other subsampling rates by
modifying the macro-block size accordingly.

C. “Fancy” Upsampling

Until libjpeg version 6, two specialized “fancy” up-
samplers are available. These algorithms perform a linear
interpolation of input pixels. Chrominance pixels are weighted
by proximity. This is supposed to produce higher quality
results while maintaining a good processing speed [3]. The
available upsampling methods handle the two common cases:
1) chrominance information is halved in horizontal and not
changed in vertical direction (h2v1); or 2) color information
is halved in both, vertical and horizontal, direction (h2v2).
For other subsampling rates, libjpeg defaults to simple
upsampling. For the case of h2v1, the nearest chrominance
pixel is weighted with 3/4 and the more distant pixel with
1/4, as shown in Figure 2(a). For the case of h2v2, the
nearest chrominance pixel is weighted with 9/16, the two
orthogonally adjacent pixels are weighted with 3/16 and the
diagonally adjacent pixel with 1/16, as shown in Figure 2(b).
Both approaches are commonly referred to as triangle filters.



Fig. 3. Difference with successive recompressions and two cyclic final states

Triangle filters influence the values of adjacent pixels even
across macro-block boundaries. Hence, we observe spill-over
effects at the border of macro-blocks due to the chrominance
interpolation. As a result, a block cannot be considered stable
unless all blocks of an image are stable. One option is to ignore
spill-over effects and consider a macro-block stable if, for all
channels, none of its values change with the next compression.
This leads to longer convergence paths that are not as clear-cut.
Some blocks converge fast, while some do not converge at all.
Alternatively, we can prevent spill-over effects between blocks
by isolating each macro-block and observing its convergence
path without the influence of surrounding blocks. This can
be done by JPEG-compressing each macro-block individually.
The first isolated compression is unlikely to produce many
stable blocks due to the change of compression settings, but
subsequent compressions produce a distinct convergence path.

However, even when avoiding spill-over effects, we observe
that about 15% of all blocks do not become stable within
the first 40 iterations. In some cases we even observe cycles:
blocks alternate between different states and never become
stable. A shortened example of such cyclic behavior is shown
in Figure 3 for a 16×16 image. White denotes pixels that did
not change with the last compression and black denotes pixels
that changed. This enables interesting application scenarios.
For example, cyclic blocks could be used to create copy-
evident JPEG images, similar to copy-evident printing [10]. By
embedding these cyclic “counter blocks” into an image one can
observe in which state the blocks are and use this information
to determine how often the image has been recompressed.
If the cycle lengths of different “counter blocks” do not
share a common divisor, i.e. if the lengths are co-prime, the
exact number of times the image has been compressed can
be determined. Depending on the appearance of the “counter
blocks”, they can either be embedded into the image or placed
as control blocks in a dedicated area. To protect blocks from
spill-overs, they should be surrounded by content that is similar
at the macro-block boundaries.

D. DCT Scaling

Starting with version 7, libjpeg introduces a “fancy”
approach for subsampling and replaces the former “fancy”
upsampler. This approach is called DCT scaling. The DCT
is performed on larger blocks, but higher frequencies of the
result are neglected to reduce the color information [11],
[12]. For upsampling, a chrominance block is zero-padded to
its original size before performing the inverse DCT (IDCT).
Taking subsampling rate 4:2:0 as an example, the DCT is
performed on a 16 × 16 block but only the lower 8 × 8
frequencies are stored. For upsampling, the 8 × 8 block is
zero-padded to its original size before applying the IDCT.
libjpeg only supports DCT for block sizes less or equal to
16×16. For less common subsampling rates that would require
larger block sizes, e.g. 4:1:0, a form of simple subsampling is

0 0.2 0.4 0.6 0.8 1

0

10

20

30

ratio of stable blocks r

pr
ob

ab
ili

ty
de

ns
ity

t = 0 t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7

Fig. 4. Fitted beta distributions; no subsampling; libjpeg 8d; Q = 100

used first to bring the block to a supported size.

Similar to the simple upsampler, DCT scaling is confined
within the size of a macro-block and there are no spill-over
effects. Overall, this sub- and upsampling method has a much
faster convergence path with low variation in the ratio of stable
blocks, similar to simple sub- and upsampling.

E. Carbon Dating for Color Images

A general problem of the convergence paths for color
images is that very few blocks become stable within the first
compression. This makes it hard to distinguish whether an
image was never compressed or has been compressed once.
Arguably, this decision is one of the most important questions
in carbon dating and image forensics in general. To solve
this, we track the development of the ratio of stable blocks
r over the next n compressions. This gives us the sequence
r0, . . . , rn which we can use as an empirical distribution
of r for n compressions. To carbon date images, we fit a
theoretical distribution to the observed empirical distribution.
Our distribution of choice is the beta distribution with the two
shape parameters α and β.

To fit the distribution, we use the maximum-likelihood
method to estimate parameters conditional to the number of
compressions t. An example for the fitted beta distributions
for subsampling rate 4:4:4 is shown in Figure 4. We can then
estimate t, again by using maximum-likelihood. This means
we choose the family of theoretical distributions that has the
highest combined probability density for the observed values:

t̂ = argmax
i

(pi(r0) · . . . · pi+n(rn)) , (3)

where pi is the density of the beta distribution fitted for the
observed values for t = i. Since the beta distribution is
undefined for the boundary values 0 and 1 we add a small
amount ε to 0-values and subtract the same from 1 [13].

To evaluate the choice of the beta distribution, we use Q-Q-
plots and compare the fitted distributions against the observed
values. Figure 5 exemplarily shows the Q-Q-plot for t = 3.
Even though we observe some deviation from the theoretical
distribution, the beta distribution seems to fit for carbon dating.

In general, the maximum-likelihood estimate works well
when there is little overlap between the fitted distributions.
However, with overlapping distributions, e.g. for a large t, the



0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

theoretical quantiles

sa
m

pl
e

qu
an

til
es

Fig. 5. Q-Q-Plot for the fitted beta distribution and t = 3

discriminatory power is lower, which makes it hard to estimate
the true number of compressions. An alternative approach is
to use the sequence r0, . . . , rn as features to train a machine
learning algorithm such as a Random Forest [14] or a Support
Vector Machine [15] and use their classification for carbon
dating. In our experiments we were able to observe slightly
superior results when using machine learning. For this reason,
we focus on this approach in the following sections.

IV. EXPERIMENTAL SETUP

To evaluate the proposed extensions, we benchmark them
with a large dataset of 1600 never compressed natural images
obtained from the Dresden Image Database [16]. The images
are of varying size and acquired with various camera models
from different manufacturers. To evaluate the influence of
the sub- and upsampling algorithm we compare the common
JPEG-libraries libjpeg 6b and libjpeg 8d. We use
libjpeg 8d instead of libjpeg 7 and libjpeg 9, as it
is more commonly used and offers the same methods for sub-
and upsampling. Additionally, the libraries offer three different
DCT implementations called “slow”, “float” and “fast”. In our
experiments we focus on the default “slow” implementation
but the results can be directly transferred to the “float” method.
As described in [1], the convergence path of “fast” differs
vastly and produces visible artifacts in the compressed image.
We therefore exclude this method from our analysis.

The images are randomly divided into training and testing
sets of equal size. For each method, we test its detection
accuracy for up to ten compressions. For every training image,
we calculate the ratio of stable blocks for the next n = 10
compressions and use the resulting features r0, . . . , rn to train
a Random Forest with 200 classification trees. The same fea-
tures are then calculated for the testing set and the classification
algorithm is asked to classify the number of compressions. We
chose to train a Random Forest since it is a fast and accurate
classifier that requires little parameter optimization [14].

V. EMPIRICAL RESULTS

When no subsampling is used, the development of the
ratio of stable blocks is comparable to the case of grayscale
images. Figure 6 shows the boxplots for the distribution of r
over multiple compressions. Even though there exist numerous
outliers, the probability mass is concentrated. This helps to

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

number of compressions t

ra
tio

of
st

ab
le

bl
oc

ks
r

Fig. 6. Boxplots for r dependent on t; no subsampling; libjpeg 8d;
Q = 100

Table II. CONFUSION MATRIX FOR NO SUBSAMPLING AND Q = 100

Detector
output t̂

Number of compressions t

0 1 2 3 4 5 6 7 8 9 10

0 800 1 0 0 0 0 0 0 0 0 0
1 0 799 2 0 0 0 0 0 0 0 0
2 0 0 798 2 0 0 0 0 0 0 0
3 0 0 0 798 2 1 0 0 0 0 0
4 0 0 0 0 798 4 1 0 0 0 0
5 0 0 0 0 0 795 7 2 0 0 0
6 0 0 0 0 0 0 790 14 2 1 0
7 0 0 0 0 0 0 2 776 30 4 1
8 0 0 0 0 0 0 0 8 746 52 9
9 0 0 0 0 0 0 0 0 18 687 87
10 0 0 0 0 0 0 0 0 4 56 703

reduce ambiguity for the detection of prior JPEG compression
and provides accurate classification results. A major problem
is the little difference of t = 0 and t = 1. However, we
solve this by observing the sequence r0, . . . , rn as discussed in
Section III. Table II reports the confusion matrix for up to ten
recompressions. Only very few errors can be observed for the
first six compressions. For a higher number of compressions,
minor misclassification errors appear.

To compare the results, we define two ratios for the
confusion matrices: First, the true detection rate of correctly
classified images, seen on the diagonal of the matrix. Second,
we define the off-by-two ratio as the portion of all misclassified
images which were misclassified by more than one compres-
sion. Note, that these ratios are slightly biased when calculated
for the entire confusion matrix, since t = 10 is the highest
possible estimate in our setup. To avoid this, we exclude
t = 10 and t = 9 for the calculation of these ratios. Without
subsampling we observe a true detection rate of 98.61% and
an off-by-two ratio of 10.00%. This means that 90% of the
the misclassified images are misclassified by only a single
compression.

When using a subsampling rate of 4:2:0, carbon dating
highly depends on the sub- and upsampling algorithm. For
simple sub- and upsampling the influence seems to be small.
Blocks typically require one more compression in order to
converge. Overall, however, the range of values remains small,
enabling accurate estimates. The boxplots for the distribution
of r are shown in Figure 7. We can observe a slight increase
in accuracy in comparison to the case without subsampling
with a true detection rate of 98.75%. The classification for



0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

number of compressions t

ra
tio

of
st

ab
le

bl
oc

ks
r

Fig. 7. Boxplots for r dependent on t; subsampling rate 4:2:0; simple sub-
and upsampling; libjpeg 8d; Q = 100

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

number of compressions t

ra
tio

of
st

ab
le

bl
oc

ks
r

Fig. 8. Boxplots for r dependent on t; subsampling rate 4:2:0; fancy
upsampling; libjpeg 6b; Q = 100

up to six compressions remains very accurate with only few
misclassified images. Again, most of the the misclassified
images are off by only one compression, leading to an off-
by-two ratio of only 4.44%.

Carbon dating for fancy upsampling of libjpeg 6b, on
the other hand, is considerably more difficult. When ignoring
spill-over effects, the spill-overs and linear interpolation of
chrominance pixels lead to a large range of values compared
to simple upsampling. The observed ratios when ignoring
spill-over effects are depicted in Figure 8. Alternatively, we
can avoid spill-over effects and compress each macro-block
individually. This reduces the range of values slightly as shown
in Figure 9 but interrupts the convergence path. In general,
both approaches allow us to analyze block convergence. In
our experiments we observed slightly better results when
ignoring spill-over effects, especially for higher number of
compressions. The resulting confusion matrix in Table III
shows a slightly higher classification error compared to simple
subsampling, that increases with the number of compressions.
The true detection rate is reduced to 94.12%, while the off-
by-two ratio increases to 15.84%.

Next, we observe the detection performance for DCT scal-
ing of libjpeg 8d. As discussed in Section III, the approach
affects similar areas as its simple counterpart. The result is a
fast convergence path without spill-over effects. Again, this
leads to much clearer intervals with little variance allowing
accurate estimates. Due to space constraints we refrain from

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

number of compressions t

ra
tio

of
st

ab
le

bl
oc

ks
r

Fig. 9. Boxplots for r dependent on t; without spill-over effects; subsampling
rate 4:2:0; fancy upsampling; libjpeg 6b; Q = 100

Table III. CONFUSION MATRIX FOR SUBSAMPLING RATE 4:2:0, FANCY
UPSAMPLING, LIBJPEG 6B AND Q = 100

Detector
output t̂

Number of compressions t

0 1 2 3 4 5 6 7 8 9 10

0 790 3 7 0 1 0 0 0 0 0 0
1 8 791 3 5 0 1 0 0 0 0 0
2 2 5 782 3 4 0 1 0 0 0 0
3 0 1 6 778 4 3 0 0 0 0 0
4 0 0 2 13 775 7 2 0 0 0 0
5 0 0 0 1 15 768 9 2 3 1 1
6 0 0 0 0 0 19 740 30 4 6 3
7 0 0 0 0 1 1 43 699 56 3 2
8 0 0 0 0 0 1 2 60 654 81 10
9 0 0 0 0 0 0 3 5 72 614 104
10 0 0 0 0 0 0 0 4 11 95 680

printing the boxplots. The results are remarkably similar to
simple sub- and upsampling as shown in Figure 7 and lead to
a true detection rate of 98.72% and a low off-by-two ratio of
2.17%.

Finally, block convergence is not limited to a quality factor
of Q = 100. Assuming that the same quality factor is used
repeatedly and known to the analyst, block convergence can
also be applied to lower quality factors. Lower quality factors
typically have a shorter convergence path, which makes it hard
to detect many compressions since the ratio of stable blocks
quickly approaches one. However, few compressions can still
be reliably detected. As an example, the detection performance
for Q = 95 and no subsampling shows almost perfect accu-
racy for up to four recompressions. For a higher number of
compressions more images are misclassified leading to a true
detection rate of 88.62% and an off-by-two ratio of 32.60%.
An overview of the ratios for all performed experiments is
given in Table IV. For comparison, we also report the accuracy
of the maximum-likelihood approach which yields competitive
results, except for the detection of fancy upsampling.

VI. IDENTIFICATION OF DCT AND SUBSAMPLING
IMPLEMENTATION

Until now we assumed that specific implementation choices
such as the DCT implementation or the sub- and upsampling
algorithm are known to the analyst. In practice, this is hardly
applicable. To estimate the DCT implementation, we can
extend the approach from [1] and compare the ratio of stable
blocks for a number of candidate implementations. While the



Table IV. OVERVIEW OF DETECTION RESULTS

subsampling Random Forest Maximum-likelihood

Q rate algorithm true detection off-by-two true detection off-by-two

100 4:4:4 – 98.61% 10.00% 88.36% 7.64%
100 4:2:0 simple 98.75% 4.44% 85.42% 6.10%
100 4:2:0 fancy 94.12% 15.84% 41.81% 44.84%
100 4:2:0 fancy (isolated) 90.06% 23.04% 34.71% 60.46%
100 4:2:0 DCT 98.72% 2.17% 93.86% 4.07%
99 4:4:4 – 98.83% 2.38% 90.21% 6.52%
95 4:4:4 – 88.62% 32.60% 64.54% 42.11%
90 4:4:4 – 69.31% 57.15% 29.19% 66.91%
75 4:4:4 – 49.06% 72.25% 23.67% 79.86%
50 4:4:4 – 35.69% 82.83% 33.39% 54.86%

same implementation will continue the convergence path, a
different implementation will interrupt it, leading to few stable
blocks. Therefore, the candidate that produces the highest ratio
of stable blocks is likely to be the true DCT implementation.

Our experiments show that this allows perfect accuracy
once blocks start to become stable, e.g. for t ≥ 3 when
no subsampling is used. For lower number of compressions,
the DCT implementation appears to have little influence on
the ratio and all implementations seem to converge regardless
of the originally used DCT implementation. This means that
we can use any DCT implementation for low number of
compressions and estimate the DCT implementation reliably
once it influences the convergence path.

The same approach can also be used to estimate the sub-
and upsampling algorithm. The combination of fancy and
simple upsampling that produces the highest ratio of stable
blocks is likely to indicate the previously used algorithms.
Again, our results show almost perfect accuracy once the first
blocks start to become stable.

VII. CONCLUSION

In this work we propose accurate image forensics for the
relevant case of color images and high quality compression. We
utilize the concept of block convergence and extend it to color
images to reliably detect prior JPEG compressions with high
quality factors. This is achieved by observing the convergence
behavior for macro-blocks and either ignoring or preventing
possible spill-over effects due to chrominance subsampling.
Then, we observe the ratio of stable blocks for several re-
compressions and use a maximum-likelihood estimation or
machine learning classification to make accurate estimates on
how often an image has been recompressed. Machine learning
showed a superior performance in our experiments but the
maximum-likelihood approach is straightforward and would
provide more accountable results, e.g. in court.

The results show almost perfect accuracy for up to six
recompressions if no subsampling is used. If the chrominance
information is subsampled, the accuracy depends on the sub-
and upsampling algorithm. We examine three different choices
available in different versions of the popular JPEG library
libjpeg. For all methods, the detection accuracy remains
strong and the majority of misclassifications are off by only a
single compression. This accuracy declines when lower quality
factors are used, but block convergence remains applicable.

Future work should derive a better theory for the conver-
gence path and the distribution of stable blocks. Of special

interest are the characteristics that influence the length of
the convergence path and properties that prevent blocks from
converging. Also, we were able to observe cyclic behavior for
some blocks which could be used to create copy-evident JPEG
images, similar to copy-evident printing, by embedding these
“counter blocks” in images. Additionally, the applicability of
block convergence analysis when images are recompressed
with varying settings should be examined. Furthermore, a
more theoretically founded approach to detect the subsampling
implementation could be applied, e.g. by estimating linear
dependencies between pixel values [17]. Finally, block con-
vergence could be explored for other lossy image and video
formats.

REFERENCES

[1] S. Lai and R. Böhme, “Block convergence in repeated transform coding:
Jpeg-100 forensics, carbon dating, and tamper detection,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2013, pp. 3028–3032.

[2] International Telecommunication Union (ITU), “Recommendation T.81:
Terminal equipment and protocols for telematic services,” 1992.

[3] Independent JPEG Group. libjpeg. [Online]. Available:
http://www.ijg.org/

[4] Z. Fan and R. de Queiroz, “Identification of bitmap compression history:
Jpeg detection and quantizer estimation,” IEEE Transactions on Image
Processing, vol. 12, no. 2, pp. 230–235, Feb 2003.

[5] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of resampling,” IEEE Transactions on Signal Processing, vol. 53,
no. 2, pp. 758–767, Feb 2005.

[6] T.-I. Lin, M.-K. Chang, and Y.-L. Chen, “A passive-blind forgery detec-
tion scheme based on content-adaptive quantization table estimation,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 21, no. 4, pp. 421–434, April 2011.

[7] T. Bianchi and A. Piva, “Image forgery localization via block-grained
analysis of JPEG artifacts,” IEEE Transactions on Information Forensics
and Security, vol. 7, no. 3, pp. 1003–1017, June 2012.

[8] D. Fu, Y. Q. Shi, and W. Su, “A generalized benford’s law for jpeg
coefficients and its applications in image forensics,” in SPIE Conference
on Security, Steganography, and Watermarking of Multimedia Contents,
E. J. Delp and P. W. Wong, Eds., vol. 6505, 2007.

[9] B. Li, T.-T. Ng, X. Li, S. Tan, and J. Huang, “Statistical model of
JPEG noises and its application in quantization step estimation,” IEEE
Transactions on Image Processing, vol. 24, no. 5, pp. 1471–1484, May
2015.

[10] A. Lewis and M. Kuhn, “Towards copy-evident JPEG images,” in
Digitale Multimedia-Forensik, 39. Jahrestagung der Gesellschaft für
Informatik 2009, ser. GI-Edition: Lecture Notes in Informatics, vol.
P154, 2009, pp. 1582–1591.

[11] R. Dugad and N. Ahuja, “A fast scheme for image size change in the
compressed domain,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, no. 4, pp. 461–474, Apr 2001.

[12] C. L. Salazar and T. D. Tran, “On resizing images in the DCT domain,”
in International Conference on Image Processing, 2004. ICIP ’04,
vol. 4, Oct 2004, pp. 2797–2800.

[13] M. Smithson and J. Verkuilen, “A better lemon squeezer? Maximum-
likelihood regression with beta-distributed dependent variables.” Psy-
chological Methods, vol. 11, no. 1, pp. 54–71, 3 2006.

[14] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[16] T. Gloe and R. Böhme, “The Dresden image database for benchmarking
digital image forensics,” Journal of Digital Forensic Practice, vol. 3,
pp. 150–159, 2010.

[17] M. Kirchner, “Linear row and column predictors for the analysis
of resized images,” in Proceedings of the 12th ACM workshop on
Multimedia and security. ACM, 2010, pp. 13–18.


