
Not All Code are Create2 Equal

Michael Fröwis and Rainer Böhme

Department of Computer Science, Universität Innsbruck, Austria

Abstract. We describe the impact and measure the adoption of the
CREATE2 instruction introduced to the Ethereum Virtual Machine in the
Constantinople upgrade. This change to Ethereum’s execution environ-
ment is fundamental because it enables to modify the program stored
on a given address after deployment, making it much harder to reason
about the immutability of smart contracts. We enumerate six use cases
and novel attack vectors, and present empirical evidence from all 32 mil-
lion code accounts created between March 2019 and July 2021. The data
shows that the main beneficiaries of the upgrade are wallet contracts,
which can now use predictable addresses. But they do not require the
more risky feature of mutable smart contracts. So far, the only applica-
tions that use the latter are front-running bots and gas tokens.

Keywords: Smart Contracts, Patching, Security, Ethereum Virtual Machine

1 Introduction

The initial design of the Ethereum Virtual Machine (EVM) stipulated that pro-
gram code associated with the address of a code account cannot be changed.
This enabled users to build confidence in the integrity of a smart contract be-
fore entrusting it any value. A single exception, the possibility to remove code
with the instruction SELFDESTRUCT , has caught public attention in 2017, when
it caused a $152 million loss in an incident of a popular wallet [9]. Nonetheless,
code removed this way could not be restored or replaced with other code.

The Constantinople upgrade, effective since February 2019,1 breaks with this
convention. It adds CREATE2 , as defined in EIP-1014, to the EVM’s instruction
set. The new instruction derives the addresses of code accounts in a more con-
trollable way than the legacy CREATE instruction, which is still supported for
backward compatibility. Effectively, CREATE2 enables users to deploy different
code to the same address and therefore provides a means to update smart con-
tracts after deployment.

This radical—to some observers unanticipated—change of fundamental func-
tionality has several far-reaching implications. It was motivated by the demand
for counterfactual instantiation, i. e., the possibility to commit to program code
before it is deployed on the chain. This is useful for the efficient establishment
of state channels, a nascent off-chain technology [14,11]. Moreover, the upgrade
1 2019-02-28 20:52:04 GMT+2

2 Michael Fröwis and Rainer Böhme

simplifies the maintenance of smart contracts. Previously, rather expensive proxy
patterns were necessary to enable patching [20,15]. These become obsolete if code
can be updated right away using CREATE2 .

On the downside, the Constantinople upgrade made it harder to reason about
the code that is governing a given address at any future point in time. Many
subtleties not only render it virtually impossible for end users to convince them-
selves about the immutability of any but the most trivial smart contracts. Also
developers are prone to run into pitfalls, and automated tools for smart contract
verification may require adaptations [30,1]. The mere fact that not all users may
be aware of the possibility to update code raises security concerns.

Ethereum is not the only platform affected. The EVM has become the de
facto standard runtime environment for smart contract environments including
Ethereum Classic,2 Binance Smart Chain, xDai, POA, and Polygon. At the time
of writing, the value administered on these platforms exceeds $100 billion.

The objective of this paper is twofold. First, it offers a comprehensive descrip-
tion of the new possibilities enabled by CREATE2 and through the interactions
between old and new code. This leads us to identify a set of features comprising
new threats as well as new opportunities for applications. Second, the paper
takes a measurement approach to empirically review the prevalence of these fea-
tures on the Ethereum blockchain since the Constantinople upgrade in 2019 until
shortly before the London upgrade in August 2021. This measurement is based
on novel heuristics, which add to the contributions made in this work.

The rest of the paper is organized as follows. Section 2 describes how smart
contracts could be patched before and after the upgrade. Section 3 discusses the
effects of the upgrade and motivates the measurement of six items of interest
(IoI). Section 4 presents the data sources, methods and proposed heuristics.
Section 5 reports and interprets the measurement results along the IoIs. Section 6
connects to relevant related work. Section 7 concludes.

2 Updating Smart Contracts

This section reviews how smart contracts on Ethereum could be updated before
and after the Constantinople upgrade.3 To do so, we introduce some terminol-
ogy on how code accounts are referenced on the platform. Before the upgrade,
addresses of code accounts were bound to the deployer, i.e., the address which
has sent the CREATE transaction and a deployer specific nonce. We shall call
this approach legacy addresses. The upgrade introduced an alternative way to
reference code accounts, which replaces the nonce with a commitment to code.
We call this approach code-bound addresses.

2 Ethereum Classic activated the Constatinople changes in January 2020 [24].
3 We use upgrade to refer to changes of the platform and update for the possibility to
alter code on the platform.

Not All Code are Create2 Equal 3

<C1>

<C2>

<C3>

Dependencies of initialization
code and Env. to the hosted
program:

Init <cx>
ICx

Env(t)

Burns a1 Burns a2

a3 . . .

CR
EA

TE

IC
3

a2

CR
EA

TE

IC
2

a1
CR

EA
TE

IC
1

a0 . . .

t

E
v
er
y
cr
ea
te

p
ro
d
u
ce
s

fr
es
h
a
d
d
re
ss

a
n
+

1

Fig. 1: Pre-Constantinople: addresses are single-use. Deactivation “burns” the
address, i. e., future reuse is impossible. ICx stands for initialization code.

2.1 Updating Smart Contracts with Legacy Addresses

For legacy addresses, the address of a new code account is computed as

and
= createAddrd,nd

() = (H(rlp(d, nd)))0...159

where H is the 256-bit Keccak hash function, d is the deployer address, nd is the
nonce associated with the deployer address, rlp(d, nd) is the Recursive Length
Prefix (RLP) encoding of d and nd, and (·)0...159 denotes talking the 160 least
significant bits of the value [40]. For externally owned accounts, which are con-
trolled by private keys, nd is the number of transactions sent. For code accounts,
the nonce equals the number of code accounts already created from that address.
As nonces increase strictly monotonically, creating the same address twice is un-
likely.4 The Byzantium upgrade5 introduced a precaution against the residual
risk of address collision: account creations fail if either a program or a non-zero
nonce is associated with the target address (defined in EIP-684 [10]).

Figure 1 illustrates how new programs are created using legacy addresses. The
vertical axis depicts the address space. Every new program is deployed to a new
unique address. When a program is deactivated, by executing the SELFDESTRUCT
instruction, the address is burned and cannot be reused. The actual code C
hosted at an address a is defined by the output of an initialization code IC
provided in the CREATE transaction. Since the initialization code can access the
state of the blockchain, the deployed code can also depend on the environment
at the time of creation. In practice, many initialization codes return a constant.

Updating smart contracts created with legacy addresses is complicated. As
the code at a given address is fixed, and changing all references to a new address is
impractical and risky, developers must prepare their applications for updates by
using e. g., the transparent proxy pattern [20,15]. This means splitting a program
over multiple code accounts so that the main program is called indirectly from a
stub that resides at a permanent address (and thus cannot be updated). The stub
4 The odds are one in 280 accounts, following from the birthday problem.
5 Effective since 2017-10-16 07:22:11 GMT+2

4 Michael Fröwis and Rainer Böhme

<C1>

<C2>

<C3>

tx
b
o
u
n
d
a
ry

Resurrection:
changed code C1 → C3

Reset nonce
and program

. . .

CR
EA

TE
2

IC
1
;

S
1

a(IC2,S2) . . .

CR
EA

TE
2

IC
2
;

S
2

a(IC1,S1)

CR
EA

TE
2

IC
1
;

S
1

a0 . . .

t

A
d
d
re
ss

is
fu
n
ct
io
n
o
f

IC
c
a
n
d
se
ed

s
c

Fig. 2: Post-Constantinople: addresses are reusable. This enables resurrections.
With the right initialization code, it is possible to change the program code.

stores the address of the current main program in its state, and allows authorized
parties to change the value. This way smart contracts become patchable.

Popular libraries, like OpenZeppelin, provide off-the-shelf solutions for this
pattern [32]. Several EIPs seek to standardize the proxy pattern [33,21,34,26].
None of the proposals appears to be final and only some of them are used.6

2.2 Updating Smart Contracts with Code-bound Addresses

The CREATE2 instruction differs from CREATE in the way it calculates addresses:

a(i, s) = create2Addrd(i, s) = (H(255 ‖ d ‖ s ‖ H(i))0...159

where s is a 32-byte seed, i is the initialization code, and ‖ denotes concatena-
tion [11]. Code-bound addresses are tied to the initialization code IC and the
deployer address, but not on the nonce. The constant 255 prevents collisions
with legacy addresses because RLP encodings starting with 255 would imply
petabytes of data. The seed s can be chosen freely to enable factory contracts
that create multiple code accounts sharing the same initialization code.

Since CREATE2 does not bind the address to a nonce, creating collisions is
easy: use the same deployer account with the same seed and initialization code
IC. However, CREATE2 fails if the target address already hosts a program [10];
unless the code account is deactivated. After deactivation, it is possible to recre-
ate a code account on the same address. We call this resurrection.7

Figure 2 illustrates a resurrection of an address. Observe that since code-
bound addresses commit to the initialization code and not the actual program
code, it is indeed possible to deploy a different program after a resurrection. For

6 Using simple heuristics derived from the EIPS we found 223 873 following EIP-897,
0 following EIP-1167, 22 238 following EIP-1822, and 31 432 following EIP-1967.

7 Deactivation and the resurrection cannot take place in the same transaction because
the use of SELFDESTRUCT resets the account and its nonce at the very end of the
transaction. But it is possible within the same block.

Not All Code are Create2 Equal 5

<C1>

<C2>

<C3>

<C4>

<C5>

Resurrection:
changed code C2 → C5

Fails because
of EIP 684

cr
ea
te

IC
6

. . .

CR
EA

TE

IC
5

. . .

CR
EA

TE
2

IC
1
;

S
1

a(IC1,S1)2
. . .

CR
EA

TE

IC
1

a(IC1,S1)1

CR
EA

TE

IC
2

a(IC1,S1)

CR
EA

TE
2

IC
1
;

S
1

a0 . . .

t

tx
b
o
u
n
d
a
ry

Fig. 3: Post-Constantinople: cascaded resurrections of code accounts created with
CREATE are possible because nonces of code accounts are no longer monotonic.

this the output of the initialization code must depend on the blockchain state.
We call this behavior morphing resurrection.

return address (0xABC ...DEF).
get_code ();

Example 1.1: Morphing resurrection
involving another code account

if block.number > 1000000 {
return "0x123 ...";

} else {
return "0x345 ...";

}

Example 1.2: Morphing resurrection
with simple condition

Example 1.1, sketches initialization code which fetches the program code to be
deployed from the code account at address 0xABC...DEF.8 Another, less flexible,
approach is to include different programs as constants in the initialization code
and select the return value based on the state of the environment (e. g., the block
height). This is shown in Example 1.2.

2.3 Interaction of CREATE and CREATE2

Perhaps unexpectedly, the use of CREATE2 makes it possible to resurrect pro-
grams created with the CREATE instruction. This requires some indirections.
Recall that CREATE2 can reset the nonce of a code account by resurrecting it.
This breaks the monotonicity of nonces which prevented collisions. If the code
account we can resurrect with CREATE2 , has used CREATE to generate child code
accounts, then these children can be resurrected with CREATE [35]. Figure 3
sketches this process, which we call cascaded resurrection.

The interaction of CREATE and CREATE2 means that to detect possible resur-
rections, it is not sufficient to check for the immediate use of CREATE2 . Instead,
the entire deployer chain must be analyzed. Only code accounts deployed with

8 We prefer pseudo-code over Solidity because Solidity does not offer a way to encode
explicit returns in constructors without the use of inline EVM assembly.

6 Michael Fröwis and Rainer Böhme

CREATE before the Constantinople upgrade are safe because it was not possible
to have a CREATE2 transactions in the deployer chain.

More generally, while it was possible to detect the proxy pattern (or the
absence thereof) by inspecting the deployed code, the Constantinople update
made it much more difficult for users to reason about the immutability of smart
contacts. Almost two years after the Constantinople upgrade, we are not aware
of any block explorer or open blockchain analytics tool offering a convenient way
to see the deployment history of a contract, or simply whether it was created
using CREATE or CREATE2 . Etherscan does show if a code account had a resur-
rection. This is a first step, but users need to know in advance if an account is
resurrectable.

3 Measurement Motivation

Updating code accounts by resurrection is a fundamental change to the EVM’s
security model. Attackers can use (cascaded) morphing resurrections to trick
users into depositing value into an account hosting seemingly benign code, and
replace it with a malicious version before the victim executes a transaction to
claim value back. While community sources suggest that this change might have
been introduced unintentionally [35,29,38], the question we ask is how the Con-
stantinople upgrade has affected the ecosystem. To do so, we carry out empirical
measurements, including—to the best of our knowledge for the first time—a
heuristic to detect potentially resurrectable code accounts.

This section decomposes the effects of the upgrade into six items of interest
(IoIs), some offering mainly benefits and others increasing the attack surface.
The measurement methods and results in later sections will speak to these IoI.

3.1 IoIs Relating to Feature Expansion

Cheaper Patching (i). CREATE2 makes updateable smart contracts cheaper. Res-
urrections avoid the overhead of splitting the smart contracts into multiple code
accounts, and the communication overhead required for transparent up-gradable
proxies [35]. This way, smart contracts can be patched. Users must be wary if
patching is desired and if they trust the party who can patch.

Generalized State Channels (ii). Counterfactual instantiation [14], the possibility
to commit to settlement code of a state channel before deployment, was the
declared intention for adding CREATE2 to the EVM’s instruction set. Code-bound
addresses enable exactly this. However, recall from Section 2.2 that the hash is
taken over the initialization code that produces the program code. Parties using
counterfactual instantiation should check if the counterfactual initialization code
is static:

Definition 1. An initialization code is static if its return value does not depend
on the environment at execution time.

If one party could trick the other in agreeing on non-static initialization code, it
could appropriate all funds in the state channel independent of the agreement.

Not All Code are Create2 Equal 7

Wallet On-Boarding (iii). Using wallet code accounts instead of externally owned
accounts has many advantages. Wallets decouple the authentication from the
addresses holding funds. This gives users advanced recovery options in the case of
lost keys. To create wallet code accounts, users need funds to pay the transaction
fee of the creation. Before the upgrade, this meant users had to have a funded
externally owned account to claim a new wallet code account. The upgrade made
on-boarding easier by using a counterfactual instantiation of the wallet, which
can immediately receive funds.

Vanity Addresses (iv). Some users prefer short addresses, found after grinding
through hash pre-images. The main rational is to save gas cost. Vanity addresses
can (a) be packed more tightly in case of leading zeros; or (b) are cheaper to
pass as call parameters, since zero bytes get a discount [40]. In the absence of a
common definition of vanity addresses, we define them as follows:
Definition 2. A vanity address is an address with more than four leading
zero bytes.
Vanity addresses for code accounts existed before the Constantinople upgrade.
Users had to draw key pairs and then inspect the (legacy) addresses induced by
the first few nonces [28]. Code-bound addresses allow to grind though seed space
rather than key space. This not only facilitates the process, but also permits to
out-source the grinding of vanity addresses for code accounts [4]. Those addresses
can then be sold. This makes vanity addresses a commodity on the platform.

3.2 IoIs Relating to an Expansion of the Attack Surface

Honeypots (v). Morphing resurrections simplify the creation of honeypots, i. e.,
decoy accounts that appear vulnerable but are not. In some way, honeypots are
the Ethereum version of advance fee fraud known as “491 scam” in conventional
cybercrime [7]. Typically, users must send some funds to a code account (e. g.,
to pay fees) in order to extract greater values.

Known honeypots use barely known features of the execution environment,
popular programming languages, or block explorers to trick users into misin-
terpreting contracts as vulnerable [39]. Resurrectable code accounts allow an
attacker to deploy actually vulnerable code and then front-run the interac-
tion of the victim with a resurrection. Simple countermeasures, which look for
SELFDESTRUCT instructions, fail if cascaded resurrections and indirections with
delegate calls are used to obscure the control flow.

Underpriced Instructions (vi). The gas price of Ethereum instructions is cali-
brated carefully to render resource exhaustion attacks uneconomical [12,13,2].
Resurrectable accounts offer cheaper permanent storage [6]. The idea is that
instead of keeping data in the state of a code account, data can be stored as
program code in a new account. Writing data this way costs roughly 2/3 of
conventional storage. (Updates are more expensive.) Reading this data can be
as cheap as 1/4 of the conventional cost if multiple words are read. While esti-
mating an attacker’s break even is beyond our scope, we note that underpriced
instructions have enabled DoS attacks in the past [23,25].

8 Michael Fröwis and Rainer Böhme

4 Data Collection and Method

We parse the Ethereum blockchain until Jul 20219. We extract the set of all
deployed code accounts C and build the binary contract–deployer relation R ⊆
C2 by iterating over all internal transactions. Let (a, b) ∈ R denote that a is
deployer of b. Our heuristic to evaluate if a contract is resurrectable is based
on the this relation and some heuristics to evaluate the reachability of critical
instructions.

Definition 3. A code account c ∈ C is potentially resurrectable iff this re-
cursively defined function evaluates to true:

resurr(c) =


true, if create2Created(c) ∧ sdestrReachable(c)

false, if deployer(c) = ∅ ∨ sdestrReachable(c)

resurr(deployer(c)), otherwise.

The deployer function is defined as: deployer(c) = { a | (a, c) ∈ R}. It returns
either an empty set or a set of cardinality 1 from our deployer relation. The
function create2Created is true if c is deployed with CREATE2 .

The Ethereum node does not distinguish between CREATE and CREATE2 in
any of their public APIs. Currently, we are aware of two approaches to distinguish
between the two: (a) directly instrumenting transaction executions at the level
of the runtime environment level or (b) determining that CREATE2 was used by
ruling out that CREATE was used. We choose the latter since an instrumentation
would have to rely on unstable APIs, which makes the method hard to maintain.

To rule out that code was deployed using the legacy method, we compile
sets of all legacy addresses with nonces up to nc, the current nonce of the code
account. This is handled by the createAddrs function. If the address in question
is not in this set, then it must be a code-bound address:

createAddrs(c) =

nc⋃
n=0

(H(rlp(ac, n)))96...255

create2Created(c) = ∨s∈deployer(c)(ac ∈ createAddrs (s)).

The function sdestrReachable returns true if a SELFDESTRUCT instruction is
reachable in the context of c, meaning the account can deactivate itself. Its
implementation evaluates the presence of three instructions in the disassembled
bytecode of the code account. First, we look for SELFDESTRUCT directly; if present
we return true. Second, we look for DELEGATECALL or CALLCODE instructions.
Both instructions preserve the context of the caller, thus making it possible that
the callee can invoke SELFDESTRUCT in the context of the caller. If we find one
of the two we also return true because we cannot rule out that the called code
deactivates the account. Otherwise we return false.
9 Block: 12817905 (2021-07-13 11:07:50 GMT+2)

Not All Code are Create2 Equal 9

To further tell if the code account is able to (a) change its state or (b) change
its code upon resurrection, further non-trivial checks are needed. To rule out (a)
we need to show that the initialization code does not write to storage, or more
strictly, that the storage writes do not depend on the system state or user input.
To rule out (b) we need to establish that the return value of the initialization
code does not depend on system state or user input. Both problems are not
decidable for arbitrary program code.

Here we focus on an approximation of (b) to detect morphing resurrections.
We run the initialization code of every code account in question in an instru-
mented runtime environment to find out if it is static (Def. 1). Our executions
stop as soon as the initialization code accesses the environment to produce its
output.10 If no access to the environment is detected, we verify that the return
value corresponds to the program found on-chain.

Static initialization code is only relevant for programs with code-bound ad-
dresses. In cascading resurrections, where CREATE is used for deployment, the
resulting program can change even if the initialization code is static. This is so
because legacy addresses are not bound to the initialization code in the first
place. Therefore, our complete heuristic to detect potentially morphing resur-
rections distinguishes between the two cases.

Definition 4. We call a code account potentially morphing if it is potentially
resurrectable (Def. 3) and one of the two applies: 1. it was created with CREATE;
2. its initialization code is not static (Def. 1).

Limitations. The heuristic to detect resurrectable code accounts over-estimates
the reachability of SELFDESTRUCT instructions, i. e., it produces false positives.
Conversely, we are not aware of cases in which false negatives could occur. There-
fore, from the lens of a security analysis, it always errs on the side of caution.

Our heuristics do not take into account under which circumstances the critical
instructions, such as SELFDESTRUCT , CREATE2 , can be reached. For instance,
the community has produced examples for counterfactual instantiation without
the risk of resurrections [5,3]. This is done by keeping track of already created
addresses within the state of the deployer code account. Application code ensures
that deployments to addresses on the list fail. Our heuristic is currently blind to
such safeguards on the application layer.

Our indicator for static initialization code produces false positives if the value
of a transaction is used to decide which program to return at deployment time.

5 Measurement Results

Of the total of 32 634 990 code accounts deployed after the Constantinople up-
grade, 15 159 524 (47%) are created with CREATE2 . We proceed by discussing
selected descriptive statistics for actual and then potential resurrections, before

10 Wemake an exception for access to the value of a transaction, since popular compilers
add checks to avoid accidental value transfer.

10 Michael Fröwis and Rainer Böhme

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J
2020 2021

10

100

1k

10k
Constantinople upgrade

Identical program deployed
Program changed

Fig. 4: Number of resurrections per day. Note the log axis.

turning to the IoIs defined in Section 3. Table 2 in the appendix reports all
findings with a larger set of indicators.

5.1 Descriptive Analysis of Actual Resurrections

We find 225 032 (0.69%11) resurrections since the Constantinople upgrade. They
affect 73 583 distinct addresses, with an average of 3.1 resurrections per account.
Figure 4 suggest that adoption took off about one year after the upgrade.

Only 41 code accounts have seen morphing resurrections (i. e., with code
updates), of which 31 use non-static initialization code to modify the program.
The remaining 10 are cascaded resurrections deployed with CREATE .

To better understand the use of morphing resurrections, we manually in-
vestigate the transaction behavior of the associated accounts and searched the
Internet for relevant pointers.12 Information found on Etherscan (tags and com-
ments) and Github (known bots) suggest that 16 of the 41 are likely trading
bots. We found that all but 6 of the accounts have interacted with decentralized
exchanges (DEXs). Their transaction behavior resembles front-running, such as
holding different tokens over time and checking the balances for different tokens
regularly. 16 of the 41 accounts are still active at the time of writing (5 Oct
2021). Etherscan tags 11 of them as front-running bots. Furthermore, 25 of the
accounts use vanity addresses with up to 7 leading zeros-bytes. This suggests
that a tiny group of technically advanced users is responsible for the morphing
resurrections in our data.

It is remarkable that a large number of resurrections happened without
changing code. Figure 8a in the appendix shows the distribution of unique byte-
code instances used in these resurrections. Only four programs make up more
than 90% of these resurrections. To better understand the purpose of these non-
morphing but resurrecting accounts, we inspect their bytecode. The disassembly
reveals that all of the four programs are gas tokens.

Gas tokens are instruments designed to hedge against gas price variations [28].
They make use of Ethereum’s feature to refund gas upon freeing storage. The

11 of total deployments after Constantinople
12 Table 3 lists the accounts that had morphing resurrections along with selected statis-

tics. Table 4 documents our investigations regarding the purpose of these accounts.
Both tables are in the appendix.

Not All Code are Create2 Equal 11

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J
2020 2021

101

102

103

104

105
Constantinople upgrade

Fig. 5: Number of daily code account-creations since the Constantinople up-
grade. All creations (green), code-bound addresses Def. 3 (orange), code-bound
addresses without Chi-Gas-Token (blue), potentially resurrectable code-bound
addresses Def. 4 (red). Note the log scale.

feature’s intended purpose is to incentivize storage parsimony. However, it can
be exploited to stock up gas when it is cheap by allocating excess storage. To
redeem gas tokens when gas prices are high, excess storage is freed within the
execution of a consuming transaction. This scheme can be used to subsidize up
to 50% of the transaction’s gas cost. The use of code-bound addresses for gas
tokens has been popularized by 1inch’s Chi-Gas-Token [31] to reduce its own gas
usage, thus making it slightly more efficient.

The resurrected gas tokens in our data were deployed by only 8 code accounts.
Six of them have seen morphing resurrections and are identified as front-running
bots on Etherscan (in tags or comments). This and our manual analysis suggest
that all of the above mentioned deployers are front-running bots using their own
gas tokens to make arbitrage trades even cheaper.

5.2 Descriptive Analysis of Potential Resurrections

Figure 5 shows the creation of code accounts since the Constantinople upgrade.
The total number of new code accounts fluctuates roughly between 104–105 new
instances per day.13 About 45% of all deployments since the upgrade (14 796 170)
are potentially resurrectable code accounts, meaning that they satisfy Defini-
tion 3. Figure 9 in the appendix shows the degree distribution of the deployer
relation used by this heuristic. All accounts that have seen actual resurrections
(73 583, see Sect. 5.1) are correctly identified as potentially resurrectable. This
increases our confidence in the validity of the heuristic indicator.

Figure 7a in the appendix shows the number of potentially resurrectable
creations relative to the total number of newly created code accounts. Before May
2020, we see very little use of potentially resurrectable programs in relation to the
total number of deployments. From May 2020 onwards, the share of potentially
resurrectable code accounts rises sharply and stays relatively constant at around
70–80% of all deployments.

13 442/12 466/29 865/38 076/279 202 (min/25%/50%/75%/max)

12 Michael Fröwis and Rainer Böhme

We can attribute a large share (∼ 69.25%) to one system, called Chi-Gas-
Token. Although its accounts satisfy our resurrection heuristic (Def. 3), they are
not morphing (Def. 4) because their initialization code is always static (Def. 1).

A total of 109 195 resurrectable code accounts do not have static initialization
code, according to our heuristic. These, plus the accounts with potential for
cascaded resurrections (230 of which 159 have static initialization code) add
up to 109 354 potentially problematic accounts. Recall that these accounts can
potentially update their code at any time. Even worse, this possibility is not
apparent even when the source code of the account is inspected. Still, the share
of such accounts is small (0.74% of all potentially resurrectable accounts) and
it does not seem to increase over time (see Figure 7b).

5.3 Results on the Items of Interest

Cheaper Patching (IoI i). The very limited number (41) of accounts that had
morphing resurrections suggests that only a small group of advanced users are
currently aware of this possibility. Front-running bots seem to be the predomi-
nant users of morphing resurrection as they can benefit in two ways: a) it allows
them to adapt their strategies easily by updating code if needed, and b) it allows
them to reuse funds that are already on the account, removing the need to move
funds around. Before the upgrade, this would have required a proxy, which adds
a layer of indirection and thus increases communication cost. Hence, CREATE2
mainly improves the transaction efficiency of front-running bots. We have no
indication of CREATE2 being used for cheaper patching elsewhere.

Generalized State Channels (IoI ii). This use case (as well as the next) would
imply that we see a value transfer before the first deployment of the code account.
To analyze that, we inspect the transaction history and parse the first four
transactions of all resurrectable contracts.

For state channels, we would expect at least two participants to pre-fund the
account before its creation. In addition, we expect both participants to fund the
channel with amounts of the same magnitude, i. e., 1

10 < a
b < 10 where a, b ∈ N.

We find only 360 potentially resurrectable accounts that meet this state chan-
nel heuristic. This can mean either a) the heuristic is too restrictive (e. g., state
channels use tokens for pre-funding), or b) state channels in practice do not
rely on counterfactual instantiation, or c) state channels are barely used. Online
information suggests that state channels are not really used on the Ethereum
platform. The Github repository of Counterfactual, a project that aims to en-
able state channels on Ethereum, is archived and has not seen any activity for
more than two years.14 Given that state channels were the main reason for the
introduction of CREATE2 [11], this lack of adoption is surprising.

Wallet On-Boarding (IoI iii). For the purpose of on-boarding, we expect more
than one transaction funding the account before it is created. As for state chan-
nels, our analysis focuses on ether and does not consider tokens. We find that
14 https://github.com/counterfactual/monorepo, accessed: 15th Oct 21

Not All Code are Create2 Equal 13

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J
2020 2021

5%
25%
50%
75%

100%
Constantinople upgrade

Fig. 6: Adoption of vanity addresses. Almost all of the 351 vanity addresses are
created after the Constantinople upgrade. The vanity addresses are deployed by
231 accounts. Only two of them have created more than five vanity addresses.
Both are immutable CREATE2 factories [5].

696 230 of the resurrectable accounts (4.7%) were pre-funded before deploy-
ment. This amounts to 95% of the accounts that have been pre-funded after
Constantinople.15 To shed more light into the use of these accounts we analyze
their deployers. We find 180 different deployers for all pre-funded addresses. 95%
of the accounts where created by 8 deployers only. We could identify 82% of the
deployed accounts as either wallets or forwarder accounts. Forwarder accounts
are used to create fresh deposit addresses [27,18]. In summary, we observe that
wallet on-boarding is indeed a practical use case of CREATE2 for its predictable
addresses, but this use case does not need the feature to update code.

Vanity Addresses (IoI iv). Figure 6 shows that most vanity addresses are de-
ployed after the Constantinople upgrade.

The upgrade in principle enables the commodification of vanity addresses for
code accounts. For this, we would expect a small number of suppliers specialized
on grinding vanity addresses and selling them to interested parties by deploying
code on their customers’ behalf. (Recall that CREATE2 still binds the derived
address to the deployer. Therefore, only the supplier can create a contract at
a derived address.) So far, we do not see any indication of trade with vanity
addresses. Only one code account deployed a significant share (84 of 351) of
vanity addresses.16 It implements a code account that facilitates deployments
using CREATE2 without the risk of resurrections [5], but it does not include
any trading functionality. Moreover, the front-running bot that brings their own
version of gas tokens (see Sect. 5.1) also uses vanity addresses. This increases gas
efficiency at deployment time because addresses are stored in bytecode without
leading zeros.

Honeypots, IoI v. Since we see so few mutating resurrections, it is safe to state
that CREATE2 is not used in honeypots at a large scale.

Underpriced Instructions, IoI vi. It is generally hard to tell if code accounts
are repurposed as cheap long-term data storage. Analyzing this would require
low-level instrumentation of the execution environment to measure the use of
15 In total we have seen 731 268 pre-funded accounts after Constantinople. As expected,

almost all of them (729 577) were deployed via CREATE2 .
16 0x0000000000ffe8b47b3e2130213b802212439497

14 Michael Fröwis and Rainer Böhme

EXTCODECOPY and the values derived from it in computations. What we can
conclude from our measurement, however, is that resurrections are currently not
widely used as a cheap substitute for updateable storage, as this would involve
morphing resurrections. To evaluate the potential of contracts being used as
write-once storage, we make the assumption that such a storage code account
would never receive or send any messages. Data is read using the EXTCODECOPY
instruction only. We find 697 760 code accounts created using CREATE2 that
match this assumption.17 Most of them (82%) are Chi-Gas-Tokens, leaving us
with an upper bound of 125 692 potential write-once storage accounts.

6 Related Work

This work speaks to how users can verify the immutability of smart contracts,
and the tension between immutable code and the ability to correct bugs. It also
contributes to the nascent literature measuring the impact of platform upgrades.

Immutability. Fröwis et al. [20] study the immutability of control flow with static
program analysis. Using heuristics, they estimate that 40% of the code accounts
on Ethereum host program code that could change its control flow by updating
dynamic references. Code updates were not on the horizon as the study predates
the Constantinople upgrade by several years. Zhou et al. [41] present Erays, an
Ethereum reverse engineering tool that lifts EVM bytecode to human-readable
pseudo-code. The human-readable representation simplifies manual inspection
of smart contracts and thus the identification of mutable code paths. Di Angelo
et al. [17] review unintended use-cases of initialization code on Ethereum. They
argue that a lack of understanding of the role of initialization code opens oppor-
tunities for deception and fraud in scenarios like token harvesting and gambling.
In particular, initialization code can be used to circumvent automated checks to
tell code accounts and externally owned accounts apart.

Patching. Numerous academic works concern the identification of vulnerabili-
ties in smart contracts [22,16]. Whereas, only a couple of publications discuss
techniques to fix bugs once discovered. We focus on the latter. Rodler et al. [37]
present EVMPatch, a tool that uses bytecode rewriting to automate the cre-
ation of updateable smart contracts with the transparent proxy pattern. It com-
bines bytecode analysis with regression testing—partly based on the transaction
history—to avoid breaks during the update. Azzopardi et al. [8] explore the
use of runtime verification to recover from bugs in code accounts. They present
ContractLarva, a monitoring framework that allows to encode execution in-
variants and recovery strategies using a domain specific language. Colombo et
al. [15] extend the work of Azzopardi and discuss recovery approaches in the case
of violated execution invariants. They describe how invariant-preserving updates

17 To reduce the bias by contracts created towards the end of our observation period,
we only considered code account until two month before the end of our measurement
period. Without this, cutoff we find 3 158 545 matching code accounts.

Not All Code are Create2 Equal 15

could be implemented using the proxy pattern. Dickerson et al. [19] take another
approach. They propose proof-carrying code to allow for invariant-preserving up-
dates. Every program deployed comes with a proof that some important invariant
is never violated. In the event of a patch, the runtime system ensures that the
new code preserves the invariants specified in the original code.

All of the works mentioned above rely on the proxy pattern to enable code up-
dates. The works of Rodler and Dickerson would benefit from the cheaper patch
mechanism provided by CREATE2 . The approach of Azzopardi and Colombo can
only partly benefit from CREATE2 ; they reuse the proxy to encode the behavioral
invariants the contract must preserve, thus adapting this to CREATE2 does not
immediately avoid expensive indirections.

Platform Upgrades. We are aware of three measurement studies that directly
evaluate the effects of platform upgrades. Perez et al. [2] and Chen et al. [13]
measure underpriced instructions after the upgrade including EIP-150, which
increased gas prices to avoid DoS attacks. Recently, Reijsbergen et al. [36] eval-
uate the effects of the changes in the calculation of transaction fees introduced
by EIP-1559. We deem this under-researched and believe that the governance of
platforms such as Ethereum should stand on solid empirical foundations.

7 Conclusion

This work describes the impact and measures the adoption of CREATE2 , a new
EVM instruction that makes address assignment more predictable. Our mea-
surement is motivated by a side effect of CREATE2 with security implications,
namely the ability to patch code accounts in place. We have proposed a novel
heuristic indicator to identify CREATE2 -patchable code accounts, and applied it
to the the relevant two years of Ethereum blockchain data.

The data shows that CREATE2 has become the dominant form of deployment
since May 2020. But the dominance is largely driven by gas tokens using CREATE2
to increase their efficiency. As expected, wallet and forwarder contracts have
also adopted CREATE2 . They benefit from the intended use case of CREATE2 ,
counterfactual instantiation, i. e., contracts that can be funded before they are
deployed. Interestingly, we do not find any indication of state channels using
CREATE2 , despite this was the proclaimed reason for the addition of CREATE2 .

Patching via CREATE2 has seen very little use since the upgrade. Mainly the
infrastructure of front-running seems to take advantage of it. A manual analysis
of all relevant accounts lets us conclude that this new and opaque form of code
patching is—so far—not used maliciously to defraud users. Still, according to
our heuristic there are more than 100k accounts with the potential to change
their code in the future. The community is well advised to keep watching this.

In summary, we conjecture that the main reason for the limited use of
CREATE2 for patching is a lack of awareness. Moreover, none of the uses cases we
discussed, or that were discussed in the proposal of CREATE2 , use the patching
feature. This feature increases the attack surface without need, and offers limited
benefit to a few experienced users only.

16 Michael Fröwis and Rainer Böhme

Acknowledgments

We would like to thank Patrik Keller and Bernhard Haslhofer for their valuable
feedback. This work has received funding from the Austrian Research Promotion
Agency (FFG) and the Austrian Security Research Programme (KIRAS).

References

1. EVM - implement EIP 1014: Skinny CREATE2 #1165.
https://github.com/trailofbits/manticore/issues/1165, [Online; accessed 28 Oct
2021]

2. 0002, D.P., Livshits, B.: Broken Metre: Attacking Resource Metering in EVM. In:
27th Annual Network and Distributed System Security Symposium, NDSS. The
Internet Society (2020)

3. 0age: Metamorphic.
https://github.com/0age/metamorphic, [Online; accessed 07 April 2021]

4. 0age: On Efficient Ethereum Addresses.
https://medium.com/coinmonks/on-efficient-ethereum-addresses-3fef0596e263
(2018), [Online; accessed 20 May 2021]

5. 0age: Etherscan CREATE2SafeDeploy.
https://etherscan.io/address/0x5df4c8e56fe3a95f98ce3d1935abd1b187525915/
(2019), [Online; accessed 07 April 2021]

6. 0age: On Efficient Ethereum Storage.
https://medium.com/coinmonks/on-efficient-ethereum-storage-c76869591add
(Mar 2019), [Online; accessed 25 Mai 2021]

7. Anderson, R., Barton, C., Böhme, R., Ganan, C., Grasso, T., Levi, M., Moore,
T., Vasek, M.: Measuring the Changing Cost of Cybercrime. In: Workshop on the
Economics of Information Security (WEIS). Harvard University, Cambridge, MA
(2019)

8. Azzopardi, S., Ellul, J., Pace, G.J.: Monitoring Smart Contracts: ContractLarva
and Open Challenges Beyond. In: International Conference on Runtime Verifica-
tion. Lecture Notes in Computer Science, vol. 11237, pp. 113–137. Springer (2018)

9. Böhme, R., Eckey, L., Moore, T., Narula, N., Ruffing, T., Zohar, A.: Responsible
Vulnerability Disclosure in Cryptocurrencies. Communications of the ACM 63(10),
62–71 (2020)

10. Buterin, V.: Prevent overwriting contracts #684.
https://github.com/ethereum/EIPs/issues/684 (2017), [Online; accessed 07 April
2021]

11. Buterin, V.: EIP 1014: Skinny Create2.
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md (2018), [On-
line; accessed 07 April 2021]

12. Chen, T., Li, X., Luo, X., Zhang, X.: Under-Optimized Smart Contracts Devour
Your Money. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 442–446. IEEE (2017)

13. Chen, T., Li, X., Wang, Y., Chen, J., Li, Z., Luo, X., Au, M.H., Zhang, X.: An
Adaptive Gas Cost Mechanism for Ethereum to Defend Against Under-Priced DoS
Attacks. In: International Conference on Information Security Practice and Expe-
rience. Lecture Notes in Computer Science, vol. 10701, pp. 3–24. Springer (2017)

Not All Code are Create2 Equal 17

14. Coleman, J., Horne, L., Xuanji, L.: Counterfactual: Generalized State Channels.
https://l4.ventures/papers/statechannels.pdf (2018), [Online; accessed 07 April
2021]

15. Colombo, C., Ellul, J., Pace, G.J.: Contracts over Smart Contracts: Recovering
from Violations Dynamically. In: Margaria, T., Steffen, B. (eds.) Leveraging Ap-
plications of Formal Methods, Verification and Validation. Industrial Practice. Lec-
ture Notes in Computer Science, vol. 11247, pp. 300–315. Springer International
Publishing, Cham (2018)

16. Di Angelo, M., Salzer, G.: A Survey of Tools for Analyzing Ethereum Smart Con-
tracts. In: 2019 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPCON). pp. 69–78. IEEE (2019)

17. Di Angelo, M., Salzer, G.: Collateral Use of Deployment Code for Smart Contracts
in Ethereum. In: 2019 10th IFIP International Conference on New Technologies,
Mobility and Security (NTMS). pp. 1–5. IEEE (2019)

18. Di Angelo, M., Salzer, G.: Characteristics of Wallet Contracts on Ethereum. In:
2020 2nd Conference on Blockchain Research & Applications for Innovative Net-
works and Services (BRAINS). pp. 232–239. IEEE (2020)

19. Dickerson, T., Gazzillo, P., Herlihy, M., Saraph, V., Koskinen, E.: Proof-Carrying
Smart Contracts. In: Zohar, A., Eyal, I., Teague, V., Clark, J., Bracciali, A., Pin-
tore, F., Sala, M. (eds.) Financial Cryptography and Data Security, WTSC Work-
shop. Lecture Notes in Computer Science, vol. 10958, pp. 325–338. Springer Berlin
Heidelberg (2019)

20. Fröwis, M., Böhme, R.: In Code We Trust? Measuring the Control Flow Immutabil-
ity of All Smart Contracts Deployed on Ethereum. In: Garcia-Alfaro, J., Navarro-
Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) Data Privacy Manage-
ment, Cryptocurrencies and Blockchain Technology, ESORICS 2017 International
Workshops. Lecture Notes in Computer Science, vol. 10436, pp. 357–372. Springer,
Cham (2017)

21. Gabriel Barros, P.G.: EIP-1822: Universal Upgradeable Proxy Standard (UUPS).
https://eips.ethereum.org/EIPS/eip-1822 (2019), [Online; accessed 07 April 2021]

22. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and Tools for the Static
Analysis of Ethereum Smart Contracts. In: International Conference on Computer
Aided Verification. Lecture Notes in Computer Science, vol. 11561, pp. 51–78.
Springer (2018)

23. Hertig, A.: So, Ethereum’s Blockchain is Still Under Attack. . . .
http://www.coindesk.com/so-ethereums-blockchain-is-still-under-attack/ (Oct
2016), [Online; accessed 18 June 2017]

24. Isaac Ardis, W.T.: ECIP 1056: Agharta EVM and Protocol Upgrades.
https://ethereumclassic.org/blog/2020-01-11-agharta-hard-fork-upgrade (Nov
2020), [Online; accessed 25 Mai 2021]

25. Jameson, H.: FAQ: Upcoming Ethereum Hard Fork.
https://blog.ethereum.org/2016/10/18/faq-upcoming-ethereum-hard-fork/ (Oct
2016), [Online; accessed 18 June 2017]

26. Jorge Izquierdo, M.A.: EIP-897: ERC DelegateProxy.
https://eips.ethereum.org/EIPS/eip-897 (2018), [Online; accessed 07 April 2021]

27. Joveski, B.: USDC payment processing in Coinbase Commerce.
https://blog.coinbase.com/usdc-payment-processing-in-coinbase-commerce-
b1af1c82fb0 (Aug 2019), [Online; accessed 18 November 2021]

28. Lorenz Breidenbach, Phil Daian, F.T.: GasToken.io - Cheaper Ethereum transac-
tions, today.
https://gastoken.io/#GST2, [Online; accessed 19 Oct 2021]

18 Michael Fröwis and Rainer Böhme

29. Maurelian: Newsletter 16 — CREATE2 FAQ.
https://consensys.net/diligence/blog/2019/02/smart-contract-security-
newsletter-16-create2-faq/ (2019), [Online; accessed 08 Mai 2021]

30. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., Brun-
son, T., Dinaburg, A.: Manticore: A User-Friendly Symbolic Execution Framework
for Binaries and Smart Contracts. In: 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). pp. 1186–1189. IEEE (2019)

31. 1inch Network: 1inch introduces Chi Gastoken.
https://blog.1inch.io/1inch-introduces-chi-gastoken-d0bd5bb0f92b, [Online; ac-
cessed 05 Mai 2021]

32. OpenZeppelin: OpenZeppelin Proxy Contract Implementations.
https://docs.openzeppelin.com/contracts/4.x/api/proxy, [Online; accessed 07 Nov
2021]

33. Palladino, S.: EIP-1967: Standard Proxy Storage Slots.
https://eips.ethereum.org/EIPS/eip-1967 (2019), [Online; accessed 07 April 2021]

34. Peter Murray, Nate Welch, J.M.: EIP-1167: Minimal Proxy Contract.
https://eips.ethereum.org/EIPS/eip-1167 (2018), [Online; accessed 07 April 2021]

35. rajeevgopalakrishna: Potential security implications of CREATE2? (EIP-1014).
https://ethereum-magicians.org/t/potential-security-implications-of-create2-eip-
1014/2614 (2019), [Online; accessed 08 April 2021]

36. Reijsbergen, D., Sridhar, S., Monnot, B., Leonardos, S., Skoulakis, S., Piliouras,
G.: Transaction Fees on a Honeymoon: Ethereum’s EIP-1559 One Month Later.
arXiv preprint arXiv:2110.04753 (2021)

37. Rodler, M., Li, W., Karame, G.O., Davi, L.: EVMPatch: Timely and Automated
Patching of Ethereum Smart Contracts. In: 30th USENIX Security Symposium.
USENIX Association (2021)

38. (((Swende))), M.H.: Testing awareness levels here. After Constantinople, can con-
tracts that you interact suddenly change code, in-place?
https://twitter.com/mhswende/status/1093596010545336320 (2019), [Online; ac-
cessed 06 Oct 2021]

39. Torres, C.F., Steichen, M., et al.: The Art of the Scam: Demystifying Honeypots in
Ethereum Smart Contracts. In: 28th USENIX Security Symposium. pp. 1591–1607.
USENIX Association (2019)

40. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger (Pe-
tersburg revision).
https://ethereum.github.io/yellowpaper/paper.pdf (2021), [Online; accessed 07
April 2021]

41. Zhou, Y., Kumar, D., Bakshi, S., Mason, J., Miller, A., Bailey, M.: Erays: Reverse
Engineering Ethereum’s Opaque Smart Contracts. In: 27th USENIX Security Sym-
posium. p. 1371–1385. USENIX Association (2018)

Not All Code are Create2 Equal 19

A Supplemental Figures and Tables

MAMJJASONDJFMAMJJASONDJFMAMJ
2020 2021

25%

50%

75%

100%

(a) Daily creations of potentially resur-
rectable code accounts, relative to the to-
tal number of creations and the number
of creations of code-bound addresses.

MAMJJASONDJFMAMJJASONDJFMAMJ
2020 2021

25%

50%

100%

75%

(b) Percentage of new potentially resur-
rectable account creations (red) in relation
to total resurrectable code, without Chi-
Gas-Token.

Fig. 7: New potentially resurrectable code accounts per day

5 10 15 20 25 30 35 40 45 50 55

10%
25%

50%

75%

100%

◦◦◦
◦
◦
◦
◦

◦

(a) 60 bytecode instances used by 73 554
resurrecting accounts that never changed
their code (over a total of 224 830 res-
urrections). Only four bytecode instances
appear in 90% of the deployments.

5 10 15 20 25 30 35 40

5

10

15

20

25

(b) 189 bytecode instances used in 202
morphing resurrections on 41 accounts.
The light blue parts show the code in-
stances seen more than once. Almost all
morphing resurrections deploy fresh code.

Fig. 8: Bytecode instances used in resurrections; redeployment of identical code
(left) and morphing resurrections (right).

Figure 9 shows the cumulative distribution of out-degrees of the deployer-relation.18
Only 189 919 (0.41%) accounts in our relation have no deployer. These result
from deployments from externally owned accounts. Hence, almost all code ac-
counts were created by another code account.

18 The in-degree distribution is binary since every code account has exactly one de-
ployer. Only externally owned accounts have no deployer.

20 Michael Fröwis and Rainer Böhme

Fr
eq
ue

nc
y

Degree
1

1
10

10

100

100

103

103

104

104

105

105

106

106

107

107

×
×

××
×××
××××
××××××
×××××××××
×××××××××××××

×××××××××××××××××××
×××××××××××××××××××××××××××
××

××
×××

××
××

×××
××

×××
×××

×××××××××××××××××××××××××××××××××××××
××××××××××××××××××××
××××××××××××
×××××××
××××
××
××
×
×

×
Chi-Gas-Token

Fig. 9: The Ethereum deployer relation. Only 5 code accounts deployed more than
1 million other code accounts. The biggest contributors are the Chi-Gas-Token
(≈ 10m), Gas Token.io: GST2 (≈ 6.4m), MevBot (≈ 1.6m), Bitrex: Controller
(≈ 1.6m), MMM BSC (≈ 1m). MevBot is one of the contracts that have seen
morphing resurrections.

Table 1: Distribution of actual resurrections per account
Concept Statistic ref

Nr. of resurrections per account mean 3.1 Sec. 5.1
min 2.0 –
25% 2.0 –
50% 2.0 –
75% 3.0 –
max 645.0 –

Nr. of morphing resurrection per account mean 5.2 –
min 2.0 –
25% 2.0 –
50% 3.0 –
75% 7.0 –
max 25.0 –

Not All Code are Create2 Equal 21

Table 2: Dataset summary
Concept # Share of* Reference

1 Highest block 12 817 905 – – Sec. 4
2 Total code accounts created 45 666 538 – – –
3 Creations after Constantinople 32 634 990 71.5% 2 Sec. 5
4 Pre-funded before deployment 731 268 2.2% 3 Sec. 5.1, IoI iii
5 State channel pre-funding 7231 – – IoI ii
6 Total CREATE2 creations 15 159 524 46.5% 3 Sec. 5
7 Pre-funded before deployment 729 577 99.69% 4 Sec. 5.1, IoI iii
8 State channel pre-funding 7173 99.2% 5 IoI ii
9 Vanity addresses 351 – – IoI iv, Def. 2

Observed Resurrections

10 Total resurrections 225 032 1.5% 6 Sec. 5.1
11 Accounts with resurrections 73 583 – – Sec. 5.1
12 Unique programs 247 – – –
13 Unique initialization codes 549 – – –
14 Unique deployers 123 – – –
15 Vanity addresses 27 7.7% 9 IoI iv, Def. 2
16 Pre-funded before deployment 360 0.05% 4 Sec. 5.1, IoI iii
17 State channel pre-funding 2 0.03% 5 IoI ii
18 Morphing resurrections 202 0.1% 10 IoI v
19 Accounts with resurrections 41 0.05% 11 Sec. 5.1, IoI i
20 Unique programs 189 76.5% 12 –
21 Unique initialization codes 18 3.3% 13 –
22 Unique deployers 30 24.4% 14 –
23 Vanity addresses 25 92.6% 15 IoI iv, Def. 2
24 Pre-funded before deployment 1 – – Sec. 5.1, IoI iii
25 State channel pre-funding 0 – – IoI ii

Potential for Resurrections

26 Potentially resurrectable accounts 14 796 170 45.3% 3 Sec. 5.2, Def. 3
27 Unique programs 11 024 – –
28 Unique initialization codes 58 295 – – –
29 Unique deployers 1218 – – –
30 Vanity addresses 66 18.8% 9 Sec. 5.1, IoI iv, Def. 2
31 Pre-funded before deployment 696 230 95.2% 4 Sec. 5.1, IoI iii
32 State channel pre-funding 6323 87.4% 5 Sec. 5.1, IoI ii
33 Without Chi-Gas-Token 4 549 820 30.7% 26 –
34 Unique programs 11 023 99.99% 27 –
35 Unique initialization codes 58 294 100% 28 –
36 Unique deployers 1212 99.5% 29 –
37 Vanity addresses 66 100% 30 Sec. 5.1, IoI iv, Def. 2
38 Pre-funded before deployment 696 228 99.99% 31 IoI iii
39 State channel pre-funding 6323 100% 32 IoI ii
40 Potentially Morphing 109 354 2.4% 34 Sec. 5.1, Def. 4
41 Unique programs 286 2.6% 35 –
42 Unique initialization codes 29 739 51% 36 –
43 Unique deployers 327 27% 37 –
44 Vanity addresses 46 69.7% 38 IoI iv, Def. 2
45 Pre-funded before deployment 5970 – – IoI iii
46 State channel pre-funding 248 – – IoI ii

* of refers to the row number used as base to calculate the percentage.

22 Michael Fröwis and Rainer Böhme

T
ab

le
3:

A
cc
ou

nt
s
w
it
h
m
or
ph

in
g
re
su
rr
ec
ti
on

un
ti
lm

id
Ju

l2
02
1.

U
SD

va
lu
es

ba
se
d
on

cu
rr
en
t
E
T
H

P
ri
ce

(C
oi
nb

as
e
m
id
po

in
t

pr
ic
e
5t
h
O
ct

21
).

A
d
d
re
ss

D
ep
lo
y
ed

F
ir
st

se
en

L
a
st

se
en

C
a
ll
s
in

C
a
ll
s
o
u
t
N
r
d
ep
lo
y.

T
sd
.
U
S
D

in
N
r
re
d
ep
lo
y.

C
a
sc
a
d
ed

S
ta
ti
c
IC

0
x
4
5
5
0
3
c3
4
ee
6
1
5
c4
ed
5
fe
0
7
1
fc
6
cc
ee
0
6
c0
4
9
b
1
e3

A
p
r
0
3
2
0

A
p
r
0
2
2
0

A
p
r
0
3
2
0

2
0

3
1

0
0
.4

9
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f6
5
0
2
b
7
f2
b
b
a
c8
c3
0
a
3
f6
7
e9
a

J
u
n
2
1
2
1

M
a
y
0
1
2
0
J
u
l
1
3
2
1

1
7
0
6
8
8
1

2
1
5
4
5
9
1

2
1
0
0
2
5

4
5
1
1
3
9
4
.6

1
1
#

#
0
x
0
0
0
0
0
0
0
0
9
b
9
8
8
fb
ec
fd
8
3
c5
5
2
5
2
f7
8
5
9
2
e6
0
9
6
4
8

A
u
g
1
1
2
0

A
u
g
1
1
2
0

A
u
g
1
1
2
0

3
3

0
0
.0

2
#

#
0
x
d
1
c3
0
0
0
0
0
0
0
0
b
9
6
1
d
f2
3
8
7
0
0
ef
0
0
6
0
0
0
9
7
0
0
0
0
4
9

N
o
v
2
4
2
0

A
u
g
2
1
2
0

N
o
v
2
4
2
0

3
1
8
1
9

1
0
9
4
6
4

0
0
.0

2
#

0
x
0
0
f8
d
5
2
a
0
0
f6
0
0
9
4
eb
f9
0
3
ce
0
0
0
0
d
ef
b
0
0
f2
0
0
0
0

A
u
g
2
6
2
0

A
u
g
2
6
2
0

A
u
g
2
8
2
0

5
0

1
2
4

0
1
8
.7

2
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
7
4
0
a
2
2
fa
2
0
9
cf
6
8
0
6
d
3
8
f7
6
0
5
3
8
5

S
ep

2
9
2
0

S
ep

2
3
2
0

O
ct

0
1
2
0

1
2
0
8
3

2
9
7
7
5

2
7
2
9

4
5
9
2
.8

6
#

#
0
x
0
0
0
0
0
0
0
0
0
0
5
a
f5
b
f8
5
8
1
e5
1
4
3
2
4
8
b
cf
3
9
5
a
b
b
8
9
2

S
ep

2
4
2
0

S
ep

2
4
2
0

S
ep

2
4
2
0

1
9

3
7

0
0
.0

2
#

#
0
x
0
0
0
0
0
0
0
0
0
0
2
b
d
e7
7
7
7
1
0
c3
7
0
e0
8
fc
8
3
d
6
1
b
2
b
8
e1

O
ct

2
6
2
0

S
ep

2
4
2
0

N
o
v
2
7
2
0

5
1
5
9
2

1
3
1
5
5
1

1
8
4
1
2

0
.0

7
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
8
4
e9
1
7
4
3
1
2
4
a
9
8
2
0
7
6
c5
9
f1
0
0
8
4

M
a
y
0
9
2
1
S
ep

3
0
2
0

J
u
l
1
3
2
1

3
0
6
6
6
9

6
8
0
1
1
4

9
1
1
2
6

9
3
5
8
5
.6

1
1
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
a
3
2
d
c5
d
d
6
2
5
c1
0
7
8
9
8
a
1
c7
2
a
d
3
4
a

O
ct

2
1
2
0

O
ct

0
7
2
0

N
o
v
2
7
2
0

3
1
4
7

7
9
3
8

1
2
5
8

0
.0

7
#

#
0
x
0
0
0
0
0
0
0
0
0
0
7
e3
5
d
ff
0
1
5
3
a
1
8
d
e6
3
c4
f5
8
f0
4
fd
1
c

O
ct

1
7
2
0

O
ct

1
7
2
0

O
ct

1
8
2
0

7
4

7
7

0
1
1
.3

2
#

#
0
x
0
0
0
0
0
0
0
0
0
0
1
5
9
b
c4
6
c8
9
3
7
7
1
6
9
9
4
5
5
7
4
5
b
a
3
3
5
c8

O
ct

2
3
2
0

O
ct

2
2
2
0

O
ct

2
3
2
0

1
9

1
2
0

1
0
6

1
.1

3
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
7
f1
5
0
b
d
6
f5
4
c4
0
a
3
4
d
7
c3
d
5
e9
f5
6

J
u
n
2
3
2
1

O
ct

2
3
2
0

J
u
l
1
3
2
1

3
8
6
6
9
0
1
1
7
2
8
6
0
3
1

1
6
4
7
0
6
8

1
3
1
9
4
0
5
8
.0

2
5
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
eb
4
ec
6
2
7
5
8
a
a
e9
3
4
0
0
b
3
e5
f7
f1
8

M
a
y
0
5
2
1
N
o
v
1
0
2
0

J
u
l
1
3
2
1

1
4
9
1
6
7

9
4
3
1
5
3

3
2
5
4

2
2
4
8
8
4
.2

3
#

#
0
x
0
0
0
0
0
0
0
0
0
0
4
3
8
f9
7
5
cb

d
e7
6
d
5
fd
d
1
a
a
7
6
b
e4
6
5
7
7

D
ec

1
0
2
0

N
o
v
2
2
2
0

A
p
r
2
1
2
1

1
4
4
6
1

1
8
3
1
1
2

0
5
5
5
5
.6

3
#

#
0
x
0
0
9
ee
d
e3
0
4
0
8
0
0
d
b
0
0
0
0
6
4
a
b
0
0
b
d
0
0
f1
a
3
0
0
0
b
3
8

J
a
n
2
2
2
1

N
o
v
2
6
2
0

J
u
n
1
5
2
1

7
9
8

2
7
7
4

0
1
3
8
2
9
4
.0

2
#

#
0
x
4
9
3
0
7
d
7
7
5
7
2
8
d
a
f1
d
4
7
3
6
a
b
7
6
2
d
e0
ce
fd
0
3
5
e3
2
3

M
a
y
2
1
2
1
D
ec

0
6
2
0

J
u
l
1
3
2
1

9
3
5
7
0

2
1
8
7
0
1

2
9
5
5
9

1
3
7
7
3
.4

8

0
x
1
d
6
e8
b
a
c6
ea
3
7
3
0
8
2
5
b
d
e4
b
0
0
5
ed
7
b
2
b
3
9
a
2
9
3
2
d
J
u
l
1
0
2
1

D
ec

0
6
2
0

J
u
l
1
3
2
1

2
8
1
9
9
5

6
5
9
6
4
5

7
9
4
4
4

4
9
3
3
6
.1

1
4

0
x
1
b
3
0
0
6
d
5
7
d
5
d
9
6
5
3
a
4
ec
a
ea
6
cf
b
0
fd
7
2
a
1
5
3
7
cc
9

M
a
r
0
4
2
1

D
ec

1
2
2
0

J
u
l
1
1
2
1

6
0
6
9
3

1
6
4
6
7
1

6
2
1
3
1

3
3
1
6
.4

3

0
x
5
7
7
a
3
2
a
a
9
c4
0
cf
4
2
6
6
e4
9
fc
1
e4
4
c7
4
9
c3
5
6
3
0
9
b
d

A
p
r
2
4
2
1

D
ec

1
2
2
0

A
p
r
2
4
2
1

3
2
1
0
6

5
7
8
0
4

6
1
4
9

2
7
5
2
.7

4

0
x
0
0
0
0
0
0
0
0
0
0
0
b
6
9
ec
3
3
2
f4
9
b
7
c4
d
2
b
1
0
1
f9
3
c3
b
ed

M
a
y
1
4
2
1
J
a
n
0
7
2
1

M
a
y
1
4
2
1

9
7

1
4
1

0
3
6
.6

3
#

#
0
x
0
0
0
0
0
0
0
0
5
7
3
6
7
7
5
fe
b
0
c8
5
6
8
e7
d
ee
7
7
2
2
2
a
2
6
8
8
0

J
u
n
2
8
2
1

J
a
n
0
9
2
1

J
u
l
1
3
2
1

6
0
8
5
3

1
3
9
9
5
7

3
5
5
5
3

7
0
5
0
.9

1
1
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
f0
9
5
b
1
b
5
0
d
e7
8
b
7
a
6
b
c4
6
9
7
b
2
9
2
7

M
a
y
0
4
2
1
J
a
n
1
2
2
1

J
u
l
1
2
2
1

1
9
0
2

6
3
0
9

5
7
9

1
7
.2

7
#

#
0
x
4
b
d
3
7
2
cd
9
b
ed
d
4
5
e0
e2
3
c7
6
9
b
b
1
8
7
9
d
d
0
5
5
a
3
2
f2

M
a
r
0
4
2
1

J
a
n
1
5
2
1

J
u
n
0
1
2
1

1
4
1

1
0
3
0

5
0
0

8
.7

2

0
x
0
0
0
0
0
0
0
0
7
5
1
ed
f0
2
c7
2
7
ea
9
d
0
c1
c8
e6
4
f1
6
9
e3
4
3

J
a
n
3
1
2
1

J
a
n
1
9
2
1

A
p
r
1
4
2
1

1
5
8
4
3

2
7
0
9
7

2
9
5
1

0
.0

4
#

#
0
x
0
0
0
0
0
0
0
0
0
0
0
0
d
7
3
6
b
d
9
b
9
1
5
d
8
fe
9
8
e9
c5
0
7
d
f8
5
a

J
a
n
2
1
2
1

J
a
n
2
0
2
1

M
a
r
2
6
2
1

5
7
0
0

2
0
6
5
9

1
8
2
6

8
.6

2
#

#
0
x
f3
c6
2
8
9
1
b
4
8
c5
1
5
2
d
ca
7
0
e0
d
a
6
2
f7
e1
d
8
c2
cc
5
b
b

F
eb

2
6
2
1

F
eb

2
3
2
1

F
eb

2
6
2
1

1
9
0

1
3
9

3
1

0
.0

5
#

#
0
x
ff
0
cc
a
1
8
1
8
d
d
c0
d
6
6
b
5
3
a
9
6
a
9
a
a
8
b
d
a
9
0
4
3
e1
4
3
7

M
a
r
2
9
2
1

M
a
r
2
9
2
1

A
p
r
0
8
2
1

1
6
3

6
0

0
.0

7

0
x
0
0
0
0
0
0
0
0
0
0
0
3
c4
2
1
7
2
c0
b
d
d
6
9
d
6
a
fb
6
b
0
b
f4
b
4
8
8

A
p
r
2
6
2
1

A
p
r
2
2
2
1

M
a
y
1
4
2
1

1
2
4
0

3
5
4
6

1
1
7
8

1
6
.8

4
#

#
0
x
c7
9
eb
6
4
1
5
9
9
e5
1
9
3
0
a
cd
5
6
0
c9
d
d
6
0
d
8
1
ca
4
fb
8
3
1

J
u
n
0
6
2
1

A
p
r
2
3
2
1

J
u
l
1
3
2
1

6
6
5

3
7
7
1

0
1
1
5
1
.3

2
#

#
0
x
0
0
0
0
0
0
0
0
b
7
ca
7
e1
2
d
cc
7
2
2
9
0
d
1
fe
4
7
b
2
ef
1
4
c6
0
7

M
a
y
0
6
2
1
A
p
r
2
8
2
1

J
u
l
1
3
2
1

1
2
5
2
2
2

2
8
3
6
9
1

1
0
1
7
9
6

4
9
9
1
.2

2
#

#
0
x
0
0
0
0
0
0
0
0
0
0
3
b
3
cc
2
2
a
f3
a
e1
ea
c0
4
4
0
b
ce
e4
1
6
b
4
0

J
u
l
0
2
2
1

M
a
y
2
1
2
1
J
u
l
1
3
2
1

1
2
0
5
6
2

2
6
1
5
7
8

8
6
1
1
2

1
4
0
9
2
.5

1
0
#

#
0
x
0
0
0
0
0
0
0
0
9
9
cb
7
fc
4
8
a
9
3
5
b
ce
b
9
f0
5
b
b
a
e5
4
e8
9
8
7

J
u
n
2
6
2
1

M
a
y
2
4
2
1
J
u
l
1
3
2
1

6
8
4
5
5

1
5
3
9
7
6

4
2
9
1
2

5
0
9
0
.3

3
#

#
0
x
2
1
a
3
d
0
b
8
2
8
9
d
e5
4
6
4
0
2
fd
ff
f2
b
1
c8
6
0
9
7
5
cd
a
0
9
0

J
u
n
0
7
2
1

M
a
y
2
5
2
1
J
u
l
1
3
2
1

5
9
3

1
7
1
6

1
1
7

4
.6

3
#

#
0
x
c6
5
4
3
3
d
2
a
5
9
8
c3
2
3
e0
4
fd
1
4
3
5
6
6
b
0
8
6
0
9
a
f0
0
8
d
c

J
u
n
0
6
2
1

J
u
n
0
1
2
1

J
u
n
0
8
2
1

3
4
9
5

1
0
0
8
8

1
7
0
0

1
0
6
4
.1

4

0
x
0
0
0
0
0
0
0
0
0
0
3
5
b
5
e5
a
d
9
0
1
9
0
9
2
c6
6
5
3
5
7
2
4
0
f5
9
4
e

J
u
l
0
9
2
1

J
u
n
0
2
2
1

J
u
l
1
3
2
1

5
0
5
4
0

1
1
4
5
2
5

3
3
3
1
2

1
8
6
3
.5

3
#

#
0
x
5
5
eb
5
8
6
5
5
f8
2
0
2
ff
8
3
9
4
8
7
8
8
6
fe
d
b
a
2
a
1
eb
7
b
2
d
7

J
u
n
0
6
2
1

J
u
n
0
6
2
1

J
u
n
0
8
2
1

3
4

6
8

0
1
4
7
0
.1

3

0
x
0
0
0
0
0
0
0
0
0
0
a
6
8
0
0
7
3
b
2
ee
e9
3
a
b
eb
4
a
f4
d
4
a
0
9
6
f8

J
u
l
0
9
2
1

J
u
n
0
6
2
1

J
u
l
1
3
2
1

1
2
6
8

7
0
6
2

3
0
4
0

4
8
.1

4
#

#
0
x
0
0
0
0
0
0
0
0
0
3
2
9
6
2
b
5
1
5
8
9
7
6
8
8
2
8
a
d
8
7
8
8
7
6
2
9
9
e1
4

J
u
n
2
0
2
1

J
u
n
0
9
2
1

J
u
l
1
3
2
1

7
0
7
9

1
7
1
8
2

6
2
4
0

3
1
0
.9

2
#

#
0
x
0
0
0
0
0
0
0
0
9
0
4
2
b
4
0
0
7
0
c8
f8
3
b
ff
1
2
9
3
0
0
5
d
c2
5
2
5
7

F
eb

2
8
1
9

F
eb

2
8
1
9

F
eb

2
8
1
9

4
3

0
0
.0

2
#

#
0
x
7
f0
0
0
0
0
0
6
1
2
8
1
3
2
8
0
0
7
4
0
0
0
6
0
0
f7
1
0
0
0
2
b
d
b
a
a
9
c

M
a
y
0
6
2
1
A
p
r
0
8
1
9

M
a
y
0
6
2
1

1
4

7
0

7
0
.7

5

Not All Code are Create2 Equal 23

T
ab

le
4:

A
na

ly
si
s
of

m
or
ph

in
g
ac
co
un

ts
;B

al
an

ce
s
fr
om

E
th
er
sc
an

on
5t
h
O
ct
ob

er
21
.

A
d
d
re

ss
A

ct
iv

e
D

E
X

K
n
o
w

n
B

o
t

B
o
t

C
o
m

-
m

e
n
t

B
o
t

ta
g

C
o
m

m
e
n
ts

B
a
la

n
ce

U
S
D

0x
00

00
00

00
00

00
00

6f
65

02
b7

f2
bb

ac
8c

30
a3

f6
7e

9a

#

b
y
et
h

4
8
m

0x
00

00
00

00
00

00
7f

15
0b

d6
f5

4c
40

a3
4d

7c
3d

5e
9f

56

th
ir
d
la
rg
es
t
co
n
tr
a
ct

d
ep
lo
y
er

3
.8
m

0x
00

00
00

00
03

29
62

b5
15

89
76

88
28

ad
87

88
76

29
9e

14

#

#

M
in
er

a
re

to
p
re
ce
iv
er
s

2
.5
m

0x
55

eb
58

65
5f

82
02

ff
83

94
87

88
6f

ed
ba

2a
1e

b7
b2

d7

#

#
#

—
8
3
3
k

0x
00

00
00

00
00

00
0e

b4
ec

62
75

8a
ae

93
40

0b
3e

5f
7f

18

#

#
#

co
m
m
en
ts

su
g
g
es
t
N
ic
e
H
a
sh

b
u
t
tr
a
n
sa
ct
io
n
s
lo
o
k
a
li
k
e

F
ro
n
t-
ru
n
n
in
g
b
o
t

7
3
6
k

0x
00

00
00

00
99

cb
7f

c4
8a

93
5b

ce
b9

f0
5b

ba
e5

4e
89

87

#

—
2
1
9
k

0x
00

00
00

00
00

35
b5

e5
ad

90
19

09
2c

66
53

57
24

0f
59

4e

#

—
1
0
0
k

0x
00

00
00

00
00

00
08

4e
91

74
31

24
a9

82
07

6C
59

f1
00

84

—
6
8
k

0x
00

00
00

00
00

a6
80

07
3b

2e
ee

93
ab

eb
4a

f4
d4

a0
96

f8

#

#
#

—
0

0x
49

30
7d

77
57

28
da

f1
d4

73
6a

b7
62

de
0c

ef
d0

35
e3

23

#

#

—
0

0x
1d

6e
8b

ac
6e

a3
73

08
25

bd
e4

b0
05

ed
7b

2b
39

a2
93

2d

#

#

—
0

0x
00

00
00

00
00

0b
69

ec
33

2f
49

b7
c4

d2
b1

01
f9

3c
3b

ed

#

#
#

—
0

0x
00

00
00

00
57

36
77

5f
eb

0c
85

68
e7

de
e7

72
22

a2
68

80

#

—
0

0x
00

00
00

00
00

3b
3c

c2
2a

f3
ae

1e
ac

04
40

bc
ee

41
6b

40

#

—
0

0x
00

00
00

00
b7

ca
7e

12
dc

c7
22

90
d1

fe
47

b2
ef

14
c6

07

#

—
0

0x
00

00
00

00
00

00
d7

36
bd

9b
91

5d
8f

e9
8e

9c
50

7d
f8

5a

#

#
#

—
0

0x
45

50
3c

34
ee

61
5c

4e
d5

fe
07

1f
c6

cc
ee

06
c0

49
b1

e3
#

#
#

#
#

—
3
5
0

0x
00

00
00

00
00

00
74

0a
22

fa
20

9c
f6

80
6d

38
f7

60
53

85
#

#

#

—
0

0x
00

00
00

00
00

2b
de

77
77

10
c3

70
e0

8f
c8

3d
61

b2
b8

e1
#

#

—
0

0x
00

00
00

00
00

00
a3

2d
c5

dd
62

5c
10

78
98

a1
c7

2a
d3

4a
#

#
#

—
0

0x
00

00
00

00
00

15
9b

c4
6c

89
37

71
69

94
55

74
5b

a3
35

c8
#

#
#

#
#

—
0

0x
00

00
00

00
00

43
8f

97
5c

bd
e7

6d
5f

dd
1a

a7
6b

e4
65

77
#

#

#
#

—
0

0x
1b

30
06

d5
7d

5d
96

53
a4

ec
ae

a6
cf

b0
fd

72
a1

53
7c

c9
#

#

#

—
0

0x
57

7a
32

aa
9c

40
cf

42
66

e4
9f

c1
e4

4c
74

9c
35

63
09

bd
#

#

#
#

—
3
4
4

0x
00

00
00

00
00

00
f0

95
b1

b5
0d

e7
8b

7a
6b

c4
69

7b
29

27
#

#

#
#

—
7
k

0x
00

00
00

00
75

1e
df

02
c7

27
ea

9d
0c

1c
8e

64
f1

69
e3

43
#

#

#
#

—
0

0x
f3

c6
28

91
b4

8c
51

52
dc

a7
0e

0d
a6

2f
7e

1d
8c

2c
c5

bb
#

#
#

#
#

u
se
d
o
n
ly

U
S
D
T

0

0x
ff

0c
ca

18
18

dd
c0

d6
6b

53
a9

6a
9a

a8
bd

a9
04

3e
14

37
#

#

#
#

Y
ea
rn

L
in
k
T
o
k
en

se
e
E
th
er
sc
a
n
T
o
k
en

T
ra
ck
er
,
in
v
o
k
ed

b
y

E
th
er
m
in
e:

M
E
V

S
en
d
er

0

0x
00

00
00

00
00

03
c4

21
72

c0
bd

d6
9d

6a
fb

6b
0b

f4
b4

88
#

#

#
#

—
0

0x
21

a3
d0

b8
28

9d
e5

46
40

2f
df

ff
2b

1c
86

09
75

cd
a0

90
#

#

#
#

—
0

0x
c6

54
33

d2
a5

98
c3

23
e0

4f
d1

43
56

6b
08

60
9a

f0
08

dc
#

#

#
#

—
0

0x
7f

00
00

00
61

28
13

28
00

74
00

06
00

f7
10

00
2b

db
aa

9c
#

#
#

#
#

—
0

0x
00

00
00

00
9b

98
8f

be
cf

d8
3c

55
25

2f
78

59
2e

60
96

48
#

#
#

#
#

—
0

0x
d1

c3
00

00
00

00
b9

61
df

23
87

00
ef

00
60

00
97

00
00

49
#

#
#

co
m
m
en
ts

su
g
g
es
t
N
ic
e
H
a
sh

b
u
t
tr
a
n
sa
ct
io
n
s
lo
o
k
a
li
k
e

F
ro
n
t-
ru
n
n
in
g
b
o
t

0

0x
00

f8
d5

2a
00

f6
00

94
eb

f9
03

ce
00

00
de

fb
00

f2
00

00
#

#

#
#

—
0

0x
00

00
00

00
00

5a
f5

bf
85

81
e5

14
32

48
bc

f3
95

ab
b8

92
#

#

#
#

—
0

0x
00

00
00

00
00

7e
35

df
f0

15
3a

18
de

63
c4

f5
8f

04
fd

1c
#

#

#
#

—
0

0x
00

9e
ed

e3
04

08
00

db
00

00
64

ab
00

bd
00

f1
a3

00
0b

38
#

#

#
#

—
0

0x
4b

d3
72

cd
9b

ed
d4

5e
0e

23
c7

69
bb

18
79

dd
05

5a
32

f2
#

#

#
#

—
0

0x
c7

9e
b6

41
59

9e
51

93
0a

cd
56

0c
9d

d6
0d

81
ca

4f
b8

31
#

#

#
#

—
0

0x
00

00
00

00
90

42
b4

00
70

c8
f8

3b
ff

12
93

00
5d

c2
52

57
#

#
#

#
#

—
0

A
ct

iv
e
:
A
cc
o
u
n
t
w
a
s
a
ct
iv
e
in

th
e
la
st

3
0
d
a
y
s.

D
E
X

:
A
cc
o
u
n
t
u
se
d
D
E
X

sw
a
p
fu
n
ct
io
n
in

a
tr
a
n
sa
ct
io
n
.

K
n
o
w

n
B

o
t:

A
d
d
re
ss

ca
n
b
e
fo
u
n
d
in

k
n
o
w
n
b
o
t
li
st
,
h
tt
p
s:
/
/
g
it
h
u
b
.c
o
m
/
fl
a
sh
b
o
ts
/
m
ev
-i
n
sp
ec
t-
rs
/
b
lo
b
/
m
a
st
er
/
sr
c/
a
d
d
re
ss
es
.r
s.

B
o
t

C
o
m

m
e
n
t:

E
th
er
sc
a
n
co
m
m
en
ts

su
g
g
es
t
fr
o
n
t-
ru
n
n
in
g
,
B

o
t

T
a
g
:
E
th
er
sc
a
n
ta
g
su
g
g
es
t
fr
o
n
t-
ru
n
n
in
g
.

B
a
la

n
ce

s
a
re

th
e
su
m

o
f
to
k
en

a
n
E
T
H

b
a
la
n
ce
s.

