
Progressive JPEGs in the Wild:
Implications for Information Hiding and Forensics

Nora Hofer
Universität Innsbruck
Innsbruck, Austria

nora.hofer@uibk.ac.at

Rainer Böhme
Universität Innsbruck
Innsbruck, Austria

rainer.boehme@uibk.ac.at

ABSTRACT
JPEG images stored in progressive mode have become more preva-
lent recently. An estimated 30% of all JPEG images on themost popu-
lar websites use progressive mode. Presumably, this surge is caused
by the adoption of MozJPEG, an open-source library designed for
web publishers. So far, the optimizations used byMozJPEG have not
been considered by the multimedia security community, although
they are highly relevant. The goal of this paper is to document these
optimizations and make them accessible to the research community.
Most notably, we find that Trellis optimization inMozJPEGmodifies
quantized DCT coefficients in order to improve the rate–distortion
tradeoff using a perceptual model based on PSNR-HVS. This may
compromise the reliability of known methods in steganography,
steganalysis, and image forensics when dealing with images com-
pressed with MozJPEG. We also find that the type and order of
scans in progressive mode, which MozJPEG adjusts to the image,
offer novel cues that can aid forensic source identification.

CCS CONCEPTS
•Computingmethodologies→ Image compression; •Applied
computing → Evidence collection, storage and analysis; •
Security and privacy;

KEYWORDS
Progressive JPEG, MozJPEG, Trellis quantization, scan script opti-
mization, image forensics

ACM Reference Format:
Nora Hofer and Rainer Böhme. 2023. Progressive JPEGs in the Wild: Im-
plications for Information Hiding and Forensics. In Proceedings of the 2023
ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec
’23), June 28–30, 2023, Chicago, IL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3577163.3595097

1 INTRODUCTION
JPEG is a popular standard for the compression and decompression
of digital images. Introduced in 1991, it is now supported by count-
less applications [20] and more than 75% of all websites including
digital images use JPEG [37]. JPEG aims at removing imperceptible
information, and hence reducing the file size, while preserving the
perceptual quality of an image. The JPEG standard [38] defines

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0054-5/23/06.
https://doi.org/10.1145/3577163.3595097

■ Flickr.com sample
■ Internet Archive sample

0%

10%

20%

30%

2005 2010 2015 2020

MozJPEG
version 1

Figure 1: Prevalence of progressive JPEG images on the web.
The bars show the share of progressive mode among all sam-
pled JPEGs per year and data source. Note the increase after
MozJPEG was released.

different modes, including the “baseline” sequential mode and the
progressive mode. While the sequential mode encodes images as
a whole, the progressive mode partitions image data into several
scans, allowing decoders to display a low-quality version of an
image even before all image data is received, e. g., via a slow com-
munication link. The image quality is then gradually improved as
more scans are received and decoded.

Although the progressive mode has been part of the standard
from the very start, many applications do not use it by default, or
not at all. Reports of bugs in browsers when displaying progressive
JPEGs have led to recommendations against their use [10]. As a
result, the multimedia security research community has barely
studied the specifics of progressive JPEGs.

While ignoring the progressive mode was perhaps justifiable in
the 1990s and 2000s, when the community was formed, the reality
has changed in recent years. Figure 1 reports results of an ad-hoc
crawl of roughly 200.000 images from two sources of historical
JPEGs on the web: the image sharing platform Flickr.com, used by
amateur and professional photographers; and a sample of images
from the 2022 Tranco top-5000websites [26] archived in the Internet
Archive’s Wayback Machine [32]. While less than 2% of the images
on Flickr were progressive in the 2000s, this share more than tripled
after 2020. The Internet Archive sample exhibits a similar growth,
however from a higher baseline. Today, about one in three JPEG
images on the web is progressive.

The increase of progressive JPEGs found after 2014 can likely
be explained with the release of MozJPEG, an open-source library,
which outputs progressive mode by default. Its declared target

https://doi.org/10.1145/3577163.3595097
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3577163.3595097

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Nora Hofer & Rainer Böhme

group are web publishers. Therefore, the library is tuned specifi-
cally for compression with the aim to improve end user experience.
Shorter loading times of websites with many images and allowing
modern browsers to progressively decode both contribute to this
objective. Demand for these features go hand in handwith the evolu-
tion of web protocols, like SPDY/HTTP2 [17] and QUIC/HTTP3 [5,
22]. Both successors of HTTP enable connection multiplexing,
which allows servers to interleave scans of different progressive
images and thus better control the rendering of complex websites.
As a result, large social networking platforms quickly adopted pro-
gressive JPEG, as documented in blog posts by Instagram [14] in
2015, Yelp [1] in 2017, Facebook [2] in 2018, and Twitter [36] in
2023, among others. Moreover, popular messenger services such as
WhatsApp and Telegram use progressive JPEG. It is also the default
mode for libraries like Fresco [15] that help developers to deal with
images on Android.

While exploring the reasons behind the adoption of MozJPEG
might be interesting, in this work we focus on its consequences.
Since many methods in multimedia security rely on subtle traces in
the signal originating from compression and decompression opera-
tions, it is important to understand optimizations implemented in
popular implementations. Researchers tended to assume that their
methods generalize to progressive mode, arguing that it merely
changes the order of encoding in the JPEG file, but does not modify
the signal itself. However, MozJPEG invalidates this assumption. In
a nutshell: our community should not continue to ignore progres-
sive mode images because they are relevant in practice.

In this paper we address this matter and
• analyze the internals of MozJPEG, specifically its default
Trellis optimization, which changes DCT coefficients in order
to find a rate–distortion tradeoff;

• document characteristic traces in the DCT domain that Trel-
lis optimization leaves behind in output images;

• describe how progressive-mode scan scripts interact with
the compression pipeline, and

• discuss the implications for steganalysis, steganography, im-
age forensics, and watermarking.

The remainder of this paper is organized as follows. Section 2
recalls key concepts of JPEG compression, with emphasis on the
bit stream encoding and the progressive mode. Section 3 explains
how MozJPEG differs from commonly known image compression
libraries. It details Trellis optimization, the perceptual model, and
scan optimization. Section 4 presents the results of our experiments
on the effects of MozJPEG on image data. Section 5 discusses impli-
cations for our research community, before Section 6 concludes.

2 BACKGROUND
We recall JPEG compression with special emphasis on the bit stream
encoding as this is relevant for the rate–distortion optimization.
We then expand on the progressive mode before reviewing popular
implementations.

2.1 JPEG in a Nutshell
An input image in spatial domain representation is converted from
the 𝑅𝐺𝐵 to the 𝑌𝐶𝑏𝐶𝑟 color space. This process separates the lu-
minance channel 𝑌 from the chrominance channels 𝐶𝑏 and 𝐶𝑟 . As

Table 1: Variable-length encoding of coefficient values

Size Coefficient values Bit sequence

0 0 –
1 −1 1 0 1
2 −3,−2 2, 3 00, 01 10, 11
3 −7,. . . , −4 4,. . . , 7 000,. . . , 011 100,. . . , 111
4 −15,. . . , −8 8,. . . , 15 0000,. . . , 0111 1000,. . . , 1111
5 −31,. . . , −16 16,. . . , 31 00000,. . . , 01111 10000,. . . , 11111
.
.
. . . .

Table adapted from [38]; candidates in boldface (see Sec. 3.3).

Table 2: Control bytes encoding the size of the coefficient
value in bits and the preceding number of zeros (NZ). The
smaller numbers in parentheses show the bit length of the
control bytes for a specific Huffman table example.

Bits to store coefficient value

NZ 0 1 2 3 4 5 . . . 14 15

0 EOB 01 02 03 04 05 . . . 14 15
(3) (2) (3) (4) (5) (6) (0) (0)

1 - 17 18 19 20 21 . . . 30 31
(3) (5) (6) (8) (9) (0) (0)

2 - 33 34 35 36 37 . . . 46 47
(5) (7) (10) (11) (12) (0) (0)

3 - 49 50 51 52 53 . . . 62 63
(5) (8) (11) (13) (14) (0) (0)

4 - 65 66 67 68 69 . . . 78 79
(5) (8) (10) (11) (14) (0) (0)

5 - 81 82 83 84 85 . . . 94 95
(6) (9) (12) (13) (14) (0) (0)

.

.

.

14 - 225 226 227 228 229 . . . 238 239
(11) (14) (14) (14) (14) (0) (0)

15 ZRL 241 242 243 244 245 . . . 254 255
(11) (13) (14) (14) (14) (14) (0) (0)

Table adapted from [38].

the human eye is less sensitive to changes in brightness than to
changes in color, the chrominance channels can be sub-sampled to
increase the compression ratio. Typical 4:2:0 subsampling halves
each dimension of the chroma channels, i. e., keeping one quarter
of the information. All channels are divided into blocks of 8 × 8
pixels. Each block is transformed to the frequency domain using
the Discrete Cosine Transform (DCT). The resulting coefficients are
divided by subband-specific quantization factors before rounding
to the nearest integer. The quantization factors are derived from an
adjustable quality factor (QF), which is commonly chosen between
75 and 100. Lower QFs imply larger quantization factors, which in
turn result in smaller quantized coefficient values and more zeros.

JPEG defines a special source coder which combines Huffman
encoding with run-length encoding of zeros. High-frequency coef-
ficients are often quantized to zero, therefore a zigzag arrangement
yields longer sequences of consecutive zeros, also called zero runs.
The DC coefficient is treated separately and not detailed here for

Progressive JPEGs in the Wild IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA

brevity. Interestingly, the actual values of non-zero coefficients are
not subject to Huffman encoding. Instead, the standard defines a
variable-length encoding scheme, shown in Table 1. The actual
stream is composed of alternating control bytes and variable-length
coefficient values. The control bytes combine the size tag with an
optional number of zeros (NZ) preceding the coefficient. Table 2
illustrates the control bytes, also indicating special symbols, such
as end-of-block (EOB) and zero run length (ZRL).

Only the control bytes are Huffman-encoded using tables stored
in the file. Table 2 is annotated with the number of bits required
to store each displayed control byte using an example Huffman
table from the 𝑌 channel of an image compressed with QF 75. For
example, the AC coefficient sequence (3, 0, 0, 8, 0, 4) is encoded as
follows:

(0,2)︷︸︸︷
100 11︸︷︷︸

3

,

(2,4)︷ ︸︸ ︷
111 1110 0100, 1000︸︷︷︸

8

,

(1,3)︷ ︸︸ ︷
11 0111 100︸︷︷︸

4

,

where Huffman-encoded control bytes are annotated above and
variable-length coefficient values are annotated below the bit stream.

2.2 Progressive Mode
While baseline JPEG uses the sequential mode, the standard also
defines a progressive mode [38]. It partitions the information before
lossless encoding into several scans. This enables to store all nec-
essary data for a low-quality version of the complete image in the
first scan, i. e, at the beginning of the file. Subsequent scans refine
the transmitted version of the image until the full image quality is
reached. In situations where a JPEG file is transmitted over a slow
communication link, a decoder can quickly produce a low-quality
image and then gradually improve the displayed quality as more
scans are received [21]. After all scans are complete, the final image
is identical to that of a sequential JPEG file compressed with the
same settings.

The partitioning of image data is specified in the scan script.
This script can combine spectral selection, where lower-frequency
subbands are transmitted before higher-frequency subbands, with
successive approximation, where bits of lower significance are omit-
ted initially and supplied in later scans [25]. Figure 2 illustrates a
typical scan script of a grayscale image. The DCT-transformed data
is arranged as a cube where the axes represent the subbands (in
zig-zag order), the coefficient bits (from MSB to LSB), and the block
index. Spectral selection slices the cube in rows, whereas successive
approximations cut the cube into columns.

Figure 3 shows the visual effect of progressive decoding of a
768 × 128 color image compressed with QF 99, default chroma
subsampling 4:2:0 and the scan script shown in Figure 4. The image
data is partitioned into a total of nine scans using both spectral
selection and successive approximation. From left to right, each
part of the figure shows an increasing number of scans. We combine
corresponding scans for both chroma channels, although they must
be stored in separate scans in the file. The initial Scan 1 contains
the DC coefficient band without LSB, resulting in an image of 256
blocks representing the block average color. Scan 2 contains the
first five low-frequency AC coefficient bands of the luminance
channel, excluding the LSB. Scans 3 and 4 contain all AC coefficient

Scan 3

Scan 2

Sc
an

4

Scan 1

6

5

Blo
ck
s in

ch
an
ne
l

D
CT

su
bb
an
d
in

zi
gz
ag

or
de
r

DC

1

2

3

4

.

.

.

62

63

(MSB)
Quantized coefficient bits

(LSB)
7 6 5 4 3 2 1 0

Figure 2: Partitioning of a grayscale image into six scans
according to a scan script. Illustration adapted from [38].

bands of both chrominance channels, again excluding the LSB.
Scan 5 contains all remaining AC coefficient bands of the luminance
channel, again excluding the LSB. At this point, all but the least
significant bits of all coefficients are sent. Scan 6 transmits the LSBs
of all channels of the DC coefficient bands, and scans 7 to 9 transmit
the LSBs of the AC coefficient bands of all channels. Observe from
the cumulative shares of DCT coefficients and compressed file size
that the information in the first scans is compressed at a lower rate
than the refinements in the later scans. The reason for this might
be that later scans contain mainly zeros and ones, which can be
compressed very efficiently with tailored Huffman tables.

So far, the progressive mode has not been in the center of at-
tention in the research area of multimedia security. We are aware
of [35], which proposes selective image encryption specifically for
scans in progressive mode. Another innovative use is described
in [29]. The authors observe that the set of custom Huffman tables
of progressive JPEG images increase the entropy of the file header,
allowing to uniquely identify images from header information only.

2.3 Popular Implementations
Many software packages build on the open-source C library libjpeg.
libjpeg has been developed by the Independent JPEG Group [25]
since 1991. In 2010, libjpeg–turbo was created as a fork of libjpeg
with the aim of improving the decompression and compression
performance by using optimized platform-specific SIMD instruc-
tions [28]. Both libraries support the progressive mode, although
not as their default.

In 2014, Mozilla forked libjpeg–turbo into MozJPEG [30] to opti-
mize it for a different objective. MozJPEG aims to achieve higher

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Nora Hofer & Rainer Böhme

Scan 1 Scans 1–2 Scans 1–4 Scans 1–5 Scans 1–6 Scans 1–9

1.37%
4.17%

5.93%
13.34%

34.64%
25.05%

87.50%
73.14%

87.70%
73.68%

100%
100%

Figure 3: The visual effect of progressive decoding. Percentages show the cumulative share of DCT data (upper row) and
compressed file size (lower row) at different steps of decoding.

𝑌

1

2

5

6

9

𝐶𝑏

1

4

6

8

𝐶𝑟

1

3

6

7

Figure 4: The scan script used to generate Figure 3.

compression rates at the same perceived quality, effectively reduc-
ing the loading times of images on the web. To do so, it imple-
ments a rate–distortion optimization inspired from trellis quantiza-
tion [11, 39], it uses progressive mode by default, and selects scan
scripts based on the image content.

All three libraries have a common interface and can be used
widely interchangeably. The authors of [4] compare different JPEG
implementations, including different versions of libjpeg, and point
out implications for multimedia security. However, due to the dif-
ferent default compression mode, they do not compare toMozJPEG.
The present work seeks to close this gap.

3 UNDERSTANDING MOZJPEG
To the best of our knowledge, the multimedia security community
has not devoted much attention to progressive JPEG.1

This can be justified by the observation that progressive and
sequential modes transmit the very same information on the level
of quantized DCT coefficients. Hence, research on steganography,
steganalysis, watermarking, and forensics dealing with the signal
itself should be unaffected. However, the adoption of MozJPEG
thwarts this rationale: its Trellis optimization does modify the DCT
coefficients.

In this section, we explain MozJPEG’s modifications to the typi-
cal JPEG compression pipeline, thereby commenting on the realized
savings for images of varying size and QF. We then explain the per-
ceptual model, the Trellis optimization, and the scan optimization
in separate subsections. There are four major versions of MozJPEG.

1An exception is [7] who take into account the changes in DCT coefficients introduced
by the rate-distortion optimization of MozJPEG while proposing a method for robust
steganography.

The analysis in this paper refers to the latest version 4.1.1 released
in August 2022.

3.1 MozJPEG’s Compression Pipeline
Figure 5 shows a block diagram of MozJPEG’s image compression
pipeline. The signal path is located in the bottom. Parts where
MozJPEG innovates compared to other implementations are high-
lighted in orange. For the gray parts, we refer the reader to the
description in Section 2.1. Our convention on the formal notation
is summarized in Table 3.

The heart ofMozJPEG is the rate–distortion optimization. It uses
a perceptual model to calculate the distortion implied by reducing
non-zero DCT coefficients to values with shorter bit size or even
zeroing them out in order to increase the length of zero runs. The
distortion is scaled to be comparable to storage bits. The algorithm
tries to move each block in each channel independently leftwards
in the size-distortion space, illustrated in Figure 5. Small upwards
movements are tolerated, as indicated by the indifference line. The
estimated size in bits is calculated using a Huffman table specific to
the distribution of quantized DCT coefficients in the given image.

Table 3: List of symbols

𝑦𝑖 unquantized DCT coefficient value of the 𝑖-th subband
𝑦∗
𝑖

quantized DCT coefficient value before Trellis
𝑦∗∗
𝑖

quantized DCT coefficient value after Trellis
𝒒 quantization matrix
𝑞𝑖 quantization factor of the 𝑖-th subband
C set of suitable candidate values (cf. Table 1)
C𝑖 set of candidates for a given 𝑦∗

𝑖
𝑐𝑖,𝑘 elements of C𝑖
𝑟 run (number of zeros)
𝑛 coefficients in a block, i. e., length of the trellis

𝑆 (𝑦∗, 𝑟) size (in bits) of a sequence of 𝑟 zeros followed by the
non-zero coefficient 𝑦∗ after Huffman encoding

𝐷𝑖 (𝑦∗, 𝑦) (additive) distortion when the quantized coefficient
𝑦∗ represents the unquantized value 𝑦 in subband 𝑖

𝜆 rate–distortion parameter (depends on QF)
𝜅 cost (sum of size in bits and distortion)

Progressive JPEGs in the Wild IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA

• color decomp.
• subsampling
• 8×8 blocks

DCT
⌊
𝒚𝑖
𝑞𝑖

+ 1
2

⌋
0000

0 0 0
0 0
0

Size in bits

D
is
to
rt
io
n

■ Data

Header
Tables

Trellis optimizationZigzag orderQuantizePreprocessing JPEG file
Scan

optimization

Image 𝒚∗ 𝒚∗∗

...

. . .𝒒

Huffman table
Scan-specific
Huffman tables

Quantization
table

Perceptual model ’

QF

Figure 5: Compression pipeline for progressive JPEG. The orange parts are specific to defaultMozJPEG.

Note that the Trellis optimization is not performed on a scan
level but under the assumption of sequential mode. Only the result-
ing quantized DCT coefficients are passed to the scan optimization.
This step jointly optimizes a scan script and a set of corresponding
Huffman tables, which go into the output file. If both optimizations
are enabled (as by default), the estimated sizes used for Trellis op-
timization do not necessarily correspond to the actual sizes. This
is because the subsequent scan optimization almost certainly gen-
erates Huffman tables that encode control bytes with fewer bits.
This suggests that repeated optimization passes may exhibit similar
convergence behavior as reported for repeated quantization [8, 24].

3.2 Perceptual Model
The purpose of the perceptual model is to estimate the perceived
distortion for alternative (i. e., smaller) coefficient values. MozJPEG
implements the variant of PSNR-HVS described in [13]. This metric,
denoted𝐷𝑖 (𝑦∗, 𝑦), is based on the square error between the unquan-
tized coefficient 𝑦𝑖 and the dequantized coefficient 𝑞𝑖 · 𝑦∗𝑖 , where
𝑞𝑖 is the quantization factor in subband 𝑖 (cf. Table 3). The implied
assumption is that the quantization table is a good approximation
of the human sensitivity to changes in subbands [13].

An advantage of this model is that the distortion is additive in
the DCT domain, unlike many earlier models of the human visual
system [31]. This property considerably simplifies the search for
a rate–distortion tradeoff as calculating the distortion does not
involve transformations between domains and the coefficients can
be selected independently with regards to distortion.

3.3 Trellis Optimization
Trellis optimization in general solves the rate–distortion problem
by finding the path through a trellis structure that minimizes a cost
function [39]. The Viterbi algorithm can find a solution with modest

complexity even if the size in bits is variable and non-monotonic
in the coefficient value, and the distortion is non-additive across
subbands. This way, a coefficient could be rounded upwards with
small impact on the size in order to compensate a larger downward
rounding of another coefficient, leading to a net reduction in size
and a better rate–distortion tradeoff. This general case has been
proposed for video codecs [39]. MozJPEG takes a much simpler
approach.

Specifically, MozJPEG exploits two properties:

(1) the additive distortion model (cf. Section 3.2), and
(2) the fact that the variable-size encoding of coefficient values is

fixed in the JPEG standard, independent of other coefficients,
and monotonic in the absolute value of the coefficient (cf.
Table 1).

Since distortion and size are independent for non-zero coefficients,
the cost 𝜅 is independent, too. The only remaining dependency
between AC coefficients in a block arises in the case of zero runs.

Visualizing this observation in a trellis diagram, Figure 6 shows
how the number of paths to consider is limited inMozJPEG. Observe
that each candidate node in Figure 6b has exactly one incoming
edge (in orange) from the previous non-zero coefficient, regardless
of its value; plus one for each potential run of preceding zeros,
implying a quadratic upper bound of the search space. By contrast,
the general case has one incoming edge for each possible value of
the preceding non-zero coefficient, implying an exponential search
space in 𝑛.

We now describe MozJPEG’s Trellis optimization of zigzag-or-
dered AC coefficients in a block. The sequence of the difference-
encoded DC coefficients of all blocks is optimized similarly, but
we omit them here for brevity. Trellis optimization consists of two
steps: first it evaluates potential alternative coefficient values with
smaller bit sizes and then tries to increase the number and length of

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Nora Hofer & Rainer Böhme

Start

1 2 3 𝑛. . .

.

.

.

.

.

.

Run
states

Levelstates

(a) Generic, adapted from [39].

Start

1 2 3 63. . .

.

.

.

.

.

.

Zero
runs

Candidates

(b) Simplified, implemented inMozJPEG.

Figure 6: Comparing MozJPEG’s Trellis optimization (right) to the general case (left). In MozJPEG, the cost function is additive
for non-zero AC DCT coefficients. This curbs the path explosion by limiting the path dependencies to zero runs.

zero runs. We denote 𝑦∗
𝑖
and 𝑦∗∗

𝑖
as the quantized coefficients before

and after Trellis optimization, respectively. MozJPEG constructs a
set of possible alternative candidates

𝑐𝑖, 𝑗 ∈ C𝑖 = {∀𝑐 ∈ C : |𝑐 | < |𝑦∗𝑖 |} ∪ {𝑦∗𝑖 }, (1)

where set C = {±(2𝑖 − 1); 𝑖 = 1, . . . , 15} contains all numbers with
maximum absolute value per size in bits according to the variable-
length encoding of coefficient values (cf. Table 1). These numbers
are suitable candidates as they allow to encode a larger original
coefficient value with fewer bits while minimizing the distortion.

The size of non-zero coefficients also depends on the number of
preceding zeros. MozJPEG iterates over all paths with zero runs of
varying length 𝑟 preceding the non-zero coefficient. This causes
the quadratic complexity as visible in Fig. 6b. The cost 𝜅 is given by

𝜅𝑖,𝑘,𝑟 = 𝑆 (𝑐𝑖,𝑘 , 𝑟)︸ ︷︷ ︸
total size in bits

+ 𝐷𝑖 (𝑐𝑖,𝑘 , 𝑦𝑖)︸ ︷︷ ︸
distortion in subband 𝑖

+
𝑖−1∑︁
𝑗=𝑖−𝑟

𝐷 𝑗 (0, 𝑦 𝑗)︸ ︷︷ ︸
distortion of 𝑟 zeros

. (2)

Function 𝑆 returns the size (in bits) of the Huffman-encoded control
byte for a sequence of 𝑟 zeros plus the size of the variable-length
coefficient value. Note that more than one control byte may be
necessary to encode zero runs larger than 15 (cf. Table 2). Function
𝐷 is the distortion model as defined in Section 3.2.

The final quantized coefficient after Trellis optimization 𝑦∗∗
𝑖

is
set to 𝑐𝑖,𝑘 with the lowest 𝜅𝑖,𝑘,𝑟 . If 𝑟 > 0, some non-zero coefficients
𝑦∗∗
𝑗
, 𝑗 < 𝑖 may be set to zero to realize the run.

Example. Table 4 shows a numerical example. The first four
unquantized AC DCT coefficients 𝑦𝑖 are quantized to 𝑦∗

𝑖
with quan-

tization factors 𝑞𝑖 from MozJPEG’s quantization table for QF 75.
The table shows the path exploration for 𝑖 = 4 (in bold). The set of
candidates C𝑖 includes the original value 8, which has a variable
bit size of 4, and all positive numbers with the highest absolute
value for each smaller variable bit size, i. e., 7, 3, and 1. The table
has one section for the exploration of the paths associated with
each candidate. For the original value 𝑐4,1 = 8, the distortion is de-
termined by the quantization error. In our example, the distortion
of candidate 𝑐4,2 = 7 is the same, because the quantization error
∥8 · 72 − 540∥ = 36 is exactly half of the quantization factor 𝑞4.

Hence, the direction of rounding does not matter in this case. Since
7 can be encoded in two fewer bits — one from the variable-size
encoding and the other one from the Huffman table of the control
byte — the resulting cost of 35.89 is exactly two “bits” smaller than
for the original value. In this example, this costs is the minimum
of all rows, hence 𝑦∗∗4 = 7 will be the result of this optimization
step. Note that in order to get the minimum costs, the algorithm
needs to calculate them of all other rows shown, which involves
the exploration of three additional paths per candidate for potential
zero runs. For this purpose, the size column shows the accumulated
size of all coefficients up to 𝑖 . The costs of the example coefficients
are prohibitively high. This is different for higher frequency AC
coefficients, which tend to be of smaller absolute value. We have
chosen 𝑖 = 4 to fit the table in a column.

3.4 Scan Optimization
MozJPEG enables scan optimization by default. It reimplements an
idea proposed in the form of a code snippet2 published by Loren
Merritt in 2009. Unlike Trellis optimization, scan optimization does
not alter the signal. The algorithm searches 23 variations of scans
for the luminance channel and 41 for the chrominance channels to
compose the scan script with the shortest output size. This involves
deriving the optimal Huffman table for each scan. Our experiments
with 100 test images from the Alaska dataset [9] resulted in 86
distinct scan scripts for QF 100, 69 for QF 99, and 35 for QF 75.
Observe that the user-experience during progressive decoding over
slow connections is not an optimization criterion. We conjecture
that large websites therefore supply their own scan scripts.

4 EFFECTS OF MOZJPEG
This section analyzes the impact of MozJPEG on file sizes and DCT
coefficients experimentally. We use a random sample of 100 never-
compressed color images from the Alaska dataset [9]. The images
were acquired with different cameras and cropped to 512×512 pixels
by the publishers of the dataset.

2https://github.com/bsandrow/utils/blob/master/jpegrescan

Progressive JPEGs in the Wild IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA

Table 4: Example of a Trellis iteration for a coefficient with
three candidates and three preceding non-zero AC coeffi-
cients. The smaller numbers in parentheses show the bit
lengths of the Huffman-encoded control byte plus the size
of the variable-length coefficient value.

AC coefficients Size Distortion Cost
zigzag order

𝑖 1 2 3 4
𝑦𝑖 −574 −635 −107 540
𝑞𝑖 64 64 64 72
𝑦∗
𝑖

−9 −10 −2 8

Candidate 𝑐4,1 = 8:

−9 −10 −2 8 32 5.89 37.89
(5+4) (5+4) (3+2) (5+4)

−9 −10 0 8 30 49.20 79.20
(5+4) (5+4) (8+4)

−9 0 0 8 24 1639.87 1663.87
(5+4) (11+4)

0 0 0 8 17 2939.60 2956.60
(13+4)

Candidate 𝑐4,2 = 7:
−9 −10 −2 7 30 5.89 35.89
(5+4) (5+4) (3+2) (4+3)

−9 −10 0 7 27 49.33 76.33
(5+4) (5+4) (6+3)

−9 0 0 7 22 1639.88 1661.88
(5+4) (10+3)

0 0 0 7 14 2939.60 2953.60
(11+3)

Candidate 𝑐4,3 = 3:
−9 −10 −2 3 28 329.06 357.06
(5+4) (5+4) (3+2) (3+2)

−9 −10 0 3 25 372.49 397.49
(5+4) (5+4) (5+2)

−9 0 0 3 18 1963.04 1981.04
(5+4) (7+2)

0 0 0 3 10 3262.77 3272.77
(8+2)

Candidate 𝑐4,4 = 1:
−9 −10 −2 1 26 684.53 710.53
(5+4) (5+4) (3+2) (2+1)

−9 −10 0 1 22 727.97 749.97
(5+4) (5+4) (3+1)

−9 0 0 1 15 2318.52 2333.52
(5+4) (5+1)

0 0 0 1 6 3618.24 3624.24
(5+1)

4.1 Effect on File Size
Figure 7 shows how different parts of the MozJPEG compression
pipeline influence the output size. Solid lines are averages over 100
images with 512×512 pixels; dashed lines represent images down-
scaled to 48×48, the typical size of icons on social media websites.
Both sets of images are compressed with the typical 4:2:0 chroma
subsampling using three different QFs, 100, 99, and 75. MozJPEG’s
default setting with progressive mode, Trellis optimization, and
scan optimization is shown in the rightmost column. All numbers

are scaled toMozJPEG’s sequential mode without any optimization
as 100%. For comparison, the sequential default in baseline libjpeg
version 6b is given on the left.

The difference between libjpeg and MozJPEG sequential is due
to MozJPEG’s more aggressive quantization matrices and the use
of custom Huffman tables.3 Our measurements for 512×512 are
broadly in line with numbers reported by [27]. This source com-
pares compression ratio and performance of default MozJPEG to
libjpeg–turbo. It finds thatMozJPEG outputs 20% smaller files while
taking on average 25% more time to compress. Note that the study
compares MozJPEG at version 2.1, which does not apply Trellis
optimization to DC coefficients. Icon-sized images seem to benefit
significantly more from MozJPEG, speculatively a reason for its
adoption by large websites.

Turning to the compression options ofMozJPEG, Trellis optimiza-
tion offers the largest space savings, followed by scan optimization.
The use of the progressive mode alone is advantageous for larger
images; only in combination with Trellis and scan optimization it
does not blow up the file size of icon-sized images. This suggests
that MozJPEG’s defaults are chosen very reasonably for the variety
of images served on the web.

%
QF 100 QF 99 QF 75

48×48 pixel
512×512 pixel

90

100

110

120

130

Ba
sel
ine

lib
jpe
g 6
b

Se
qu
en
tia
l

Se
qu
en
tia
l

+T
rel
lis

Pro
gre
ssi
ve

Pro
gre
ssi
ve

+S
can

Op
t.

Pro
gre
ssi
ve

+T
rel
lis
Pro
gre
ssi
ve

+T
rel
lis+

S. O
.

Figure 7: Effect of compression options on file size. Average
over 100 color images. SequentialMozJPEG with all optimiza-
tions disabled = 100%.

4.2 Effect on DCT Coefficients
We measure the effect of Trellis optimization in the frequency
domain by comparing quantized AC coefficients of the luminance
channel before and after Trellis optimization.

The distribution of DCT coefficients from natural images usu-
ally follows a Laplace distribution [34]. Trellis optimization shifts

3libjpeg and libjpeg–turbo use the general-purpose Huffman tables defined in the JPEG
standard, which are clearly suboptimal for certain scans in progressive mode.

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Nora Hofer & Rainer Böhme

5%

−31 −15 −7 −3 −1 0 1 2 3 7 15 31

Figure 8: Histograms of the first DCT AC coefficient before (bar) and after (arrow) Trellis optimization for QF 99.

85%

−20 −10 −5 −2−10 1 2−5 10 20

(a) QF 75

−20 −10 −5 −2−10 1 2−5 10 20

(b) QF 99

−20 −10 −5 −2−10 1 2−5 10 20

(c) QF 100

Figure 9: Histograms of all quantized AC DCT coefficients before (bar) and after (arrow) Trellis optimization.

probability mass towards zero, and towards suitable candidate val-
ues of shorter variable-length encoding (cf. Table 1). Therefore, we
expect characteristic deviations from this discretized distribution
for images compressed with MozJPEG.

Figure 8 illustrates these deviations for coefficients of the first AC
subband of 100 sample images. It is visible that candidate coefficients
occur more frequently, while upper neighboring coefficients appear
less often. Also, the frequency of zeros increases. Figure 9 shows
the same effect for all AC coefficient subbands for different QFs.
The same effect is present, albeit less visible for non-zero values
due to the increasing number of coefficients equal and close to zero
in high-frequency subbands.

Figure 10 shows the share of coefficients being changed to zero
broken down by DCT subband and QF. The highest increases in
zeros are observed in subbands that already have a high share of
zeros. This is plausible as preexisting zero runs can be combined
or enlarged with modest additional distortion. Future detectors of

MozJPEG should weigh the subbands used for the decision by this
statistic.

Non-zero coefficients are changed at a small, but relatively con-
sistent rate in all subbands except the ones with a very high share of
zeros, as shown in Figure 11. For QF 75, some high-frequency sub-
bands are all zeros; here the ratio is not defined. Figure 12 extends
the analysis and shows that the findings hold true for all QFs from
50 to 100. It shows the average share of introduced changes of all
AC subbands as well as the first (1,2), and the two next-to-last AC
subbands in the purely horizontal (1,7), and vertical (7,1) frequency
dimension.

Finally, Figure 13 populates the rate–distortion tradeoff sketched
in Figure 5 with empirical data collected from an instrumented
version of MozJPEG. Each arrow shows how one of 128 randomly
selected blocks from a sample image moves in the size–distortion
space. The same blocks are selected for each of the three QFs. As
expected, the algorithm moves blocks to the upper left, i.e., reduc-
ing the size in bits and slightly increasing the distortion, crossing

Progressive JPEGs in the Wild IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA

(a) QF 75 (b) QF 99 (c) QF 100

Figure 10: Share of zeros before (dark) and after (dark + orange) Trellis optimization by DCT subband and JPEG quality factor.

(a) QF 75 (b) QF 99 (c) QF 100

Figure 11: Share of non-zero DCT coefficients modified by Trellis optimization.

share % Added zeros Modifications
Individual subbands (1,2) (1,7) (7,1)

0

1

2

3

4 avg

avg

50 60 70 80 90 100
QF

Figure 12: The average share of additional zeros and non-
zero modifications caused by Trellis optimization in the lu-
minance channel of 100 512 × 512 images from the Alaska
dataset for all QFs from 50 to 100.

imaginary indifference lines at 45°. Horizontal left arrows indicate
blocks that can be encoded in fewer bits without increasing distor-
tion. This can only happen if the initially quantized coefficient is
rounded upwards and the quantization error is exactly half of the
quantization factor. Our experiments show that the special case in
the numerical example of Section 3.3 actually happens in practice.
The concentration of blocks at size 3 for QF 75 can be explained
by the bits required to encode the EOB symbol according to the
image’s Huffman table (cf. Tab. 2).

5 DISCUSSION
The adoption ofMozJPEG has implications for multimedia forensics
in research and practice. In this section we map out avenues for
future research.

5.1 Implications for Steganography
Besides one exception [7], all research in JPEG steganography and
steganalysis assumes baseline JPEG. All practical steganographic
tools we are aware of support sequential mode only. Consequently,
a progressive JPEG most likely does not contain steganography
embedded with the known tools.

However, steganalysts may not only benefit.

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Nora Hofer & Rainer Böhme

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200
0
8
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200

Size (bits needed to encode all AC coefficients in the block)

D
is
to
rt
io
n
(a
da
pt
ed

PS
N
R-
H
VS

sc
al
ed

to
th
e
ta
rg
et

Q
F)

QF 100
QF 99
QF 75

Figure 13: The effect of MozJPEG’s Trellis optimization on selected blocks in the luminance channel for an example image
from the Alaska dataset [9].

Modern learning-based steganalysis is sensitive to cover–source
mismatch: detectors degrade significantly if they are run onmaterial
that deviates from the training data [18]. Early evidence suggests
that the choice of the JPEG compression library may contribute
to this mismatch [3]. Since MozJPEG is being widely adopted, but
barely considered by researchers, the true extent of this error re-
mains unknown. Specifically, the changes to the DCT coefficients
introduced by Trellis optimization resemble in part the changes
of popular embedding functions. For example, F5 [40] decrements
the absolute value of DCT coefficients and inflates the number of
zeros, quite akin MozJPEG. Consequently, pristine images com-
pressed with MozJPEG’s default may appear as false positives in
steganalysis. More research is required to evaluate and quantify
this effect. Also, steganalysis based on JPEG compatibility [12, 16]
is sensitive to the very details of the implementation and known
methods should be revisited in the light of MozJPEG.

Finaly, steganographers might try to mimic these compression
artifacts in order to hide secret messages. While the capacity is
probably very low given the low number of changes made during
Trellis optimization (cf. Figures 10 and 11), such an embedding
function could be very secure. Another insight for steganography
concerns the generalization of known embedding functions from
grayscale (single-channel) to color. An open question in the field
is whether independent embedding in all color channels is secure.
SinceMozJPEG optimizes DCT coefficients in each channel indepen-
dently, there exists at least one benign process which does exactly
this. Hence, steganalysis exploiting dependencies in color channels
may be less promising than researchers suggest [23].

5.2 Implications for Forensics
Similarly to steganalysis, most JPEG forensic techniques were de-
signed for sequential images. Therefore, these techniques may be

Progressive JPEGs in the Wild IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA

𝑌

1

2

5

6

7

10

𝐶𝑏

1

4

7

9

𝐶𝑟

1

3

7

8

Figure 14: The scan script found in images in the Forchheim
database assigned to Telegram, Twitter, and Facebook. The
script is identical to the standard scan script used by libjpeg
and libjpeg–turbo.

prone to decision errors if presented with images from MozJPEG.
For example, techniques for detecting JPEG double compression
usually rely on assumptions about the distribution of DCT coeffi-
cients. Future research should re-evaluate and, if necessary, adapt
existing methods and tools. First and foremost, techniques that
rely on assumptions about the distribution of DCT coefficients or
repeated quantization [33] seem most affected.

However, MozJPEG also provides a number of opportunities for
forensic analysis. A common task in forensics is to identify the
compression history [6]. A next logical step would be to develop
and evaluate a detector for MozJPEG.

The very fact that progressive mode has been used, the scan
script, and the use of customHuffman tablesmay reveal information
about the origin and authenticity of an image. Since baseline libjpeg
and libjpeg–turbo use fixed Huffman tables by default, and a fixed
scan script if instructed to produce progressive output, there is little
identifying information in these entries. As demonstrated in [29],
the adoption of MozJPEG has changed this.

Another interesting trace is the specific scan script used in pro-
gressive images. In a preliminary experiment, we analyzed the scan
scripts in social media images from the Forchheim image data-
base [19] and find that 97% use progressive mode. While images
assigned to Facebook, Telegram, and Twitter use the default scan
script of libjpeg and libjpeg–turbo, images assigned to WhatsApp
and Instagram contain different, distinct scan scripts. These findings
suggest that different platforms fine-tune the scan script to their
needs. Figures 14–16 show the scan scripts found. More research
is needed to validate these findings independently and over time,
while controlling the device type and software version of sender
and recipient.

5.3 Implications for Watermarking
Custom scan scripts may also have applications in digital water-
marking. Compressing a JPEG with a unique custom scan script
can serve as a fragile watermark to recognize marked images or to
detect recompression if a supposedly marked image does not have
the specific script anymore. To reduce the risk that other images
accidentally share the marking scan script, it can be designed in a
“useless” way, e. g., transmitting less relevant information first.

𝑌

1 2 3

6 7 8

𝐶𝑏

1 2 3

4

𝐶𝑟

1 2 3

5

Figure 15: The scan script found in all images in the Forch-
heim database assigned toWhatsApp.

𝑌

1

4

5

6

7

8

9

𝐶𝑏

1

2

𝐶𝑟

1

3

Figure 16: The scan script found in all images in the Forch-
heim database assigned to Instagram.

6 CONCLUSION
Progressive JPEG has become more prevalent than commonly as-
sumed, presumably due to the adoption ofMozJPEG, an open-source
library optimized for web publishers. To the best of our knowledge,
we are the first to document the optimizations implemented in
this library to make them accessible to the multimedia security
community. Our experiments reveal characteristic traces in images
compressed with MozJPEG. We discuss how these may affect es-
tablished methods in steganography, steganalysis, image forensics,
and watermarking. In particular researchers proposing learning-
based methods should in the future include images compressed
with MozJPEG in their evaluation protocol.

ACKNOWLEDGMENTS
We thank Maximilian Hils for his support on the web crawling
measurement and Benedikt Lorch and Martin Beneš for valuable
comments on the draft. This work is funded by the EU’s Horizon
2020 program under grant agreement No. 101021687 (UNCOVER).

REFERENCES
[1] Stephen Arthur. 2017. Making photos smaller without quality loss. https:

//engineeringblog.yelp.com/2017/06/making-photos-smaller.html (accessed: Jan
9, 2023).

[2] Tomer Bar. 2018. Faster photos in facebook for IOS. https://engineering.fb.com/
2015/01/28/ios/faster-photos-in-facebook-for-ios/ (accessed: Jan 9, 2023).

[3] Martin Beneš, Nora Hofer, and Rainer Böhme. 2022. The effect of the JPEG
implementation on the cover-source mismatch error in image steganalysis. In
European Signal Processing Conference. IEEE, 1057–1061.

[4] Martin Beneš, Nora Hofer, and Rainer Böhme. 2022. Know your library: How the
libjpeg version influences compression and decompression results. In Workshop
on Information Hiding and Multimedia Security. ACM, 19–25.

[5] Mike Bishop et al. 2021. Hypertext transfer protocol version 3 (HTTP/3). Internet
Engineering Task Force, Internet-Draft draft-ietf-quic-http-34 (2021).

[6] Jan Butora and Patrick Bas. 2022. High quality JPEG compressor detection via
decompression error. In GRETSI.

https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineering.fb.com/2015/01/28/ios/faster-photos-in-facebook-for-ios/
https://engineering.fb.com/2015/01/28/ios/faster-photos-in-facebook-for-ios/

IH&MMSec ’23, June 28–30, 2023, Chicago, IL, USA Nora Hofer & Rainer Böhme

[7] Jan Butora, Pauline Puteaux, and Patrick Bas. 2022. Errorless robust JPEG
steganography using outputs of JPEG coders. arXiv preprint arXiv:2211.04750
(2022).

[8] Matthias Carnein, Pascal Schöttle, and Rainer Böhme. 2015. Forensics of high-
quality JPEG imageswith color subsampling. InWorkshop on Information Forensics
and Security. IEEE, 1–6.

[9] Rémi Cogranne, Quentin Giboulot, and Patrick Bas. 2019. The ALASKA steganal-
ysis challenge: A first step towards steganalysis. In Workshop on Information
Hiding and Multimedia Security. ACM, 125–137.

[10] Wikimedia commons. 2017. Help:JPEG. https://commons.wikimedia.org/wiki/
Help:JPEG, (accessed: Feb 13, 2023).

[11] Matt Crouse and Kannan Ramchandran. 1997. Joint thresholding and quantizer
selection for transform image coding: entropy-constrained analysis and applica-
tions to baseline JPEG. Transactions on Image Processing 6, 2 (1997), 285–297.

[12] Eli Dworetzky, Edgar Kaziakhmedov, and Jessica Fridrich. 2023. Advancing the
JPEG compatibility attack: Theory, performance, robustness, and practice. (2023).

[13] Karen Egiazarian, Jaakko Astola, Nikolay Ponomarenko, Vladimir Lukin, Federica
Battisti, and Marco Carli. 2006. New full-reference quality metrics based on HVS.
In International Workshop on Video Processing and Quality Metrics, Vol. 4.

[14] Instagram Engineering. 2015. Under the Hood: Instagram in 2015.
https://instagram-engineering.com/under-the-hood-instagram-in-2015-
8e8aff5ab7c2, (accessed: Feb 13, 2023).

[15] Fresco. 2023. An image management library. https://frescolib.org/, (accessed:
Feb 13, 2023).

[16] Jessica Fridrich, Miroslav Goljan, and Rui Du. 2001. Steganalysis based on JPEG
compatibility. In Multimedia Systems and Applications, Vol. 4518. 275–280.

[17] Andrew Galloni and Kornel Lesiński. 2020. Progressive image streaming. https:
//blog.cloudflare.com/parallel-streaming-of-progressive-images/, (accessed: Mar
05, 2023).

[18] Quentin Giboulot, Rémi Cogranne, Dirk Borghys, and Patrick Bas. 2020. Effects
and solutions of cover-source mismatch in image steganalysis. Signal Processing:
Image Communication 86 (2020), 115888.

[19] Benjamin Hadwiger and Christian Riess. 2021. The Forchheim image database
for camera identification in the wild. In Pattern Recognition, Computer Vision, and
Image Processing. Springer, 500–515.

[20] Graham Hudson, Alain Léger, Birger Niss, István Sebestyén, and Jørgen Vaaben.
2018. JPEG-1 standard 25 years: past, present, and future reasons for a success.
Journal of Electronic Imaging 27, 4 (2018), 040901–040901.

[21] Jaehan In, Shahram Shirani, and Faouzi Kossentini. 1998. JPEG compliant efficient
progressive image coding. 5 (1998), 2633–2636.

[22] Jana Iyengar, Martin Thomson, et al. 2021. QUIC: A UDP-based multiplexed and
secure transport. In RFC 9000.

[23] Matthias Kirchner and Rainer Böhme. 2014. “Steganalysis in Technicolor” Boost-
ing WS detection of stego images from CFA-interpolated covers. In International
Conference on Acoustics, Speech and Signal Processing. IEEE, 3982–3986.

[24] ShiYue Lai and Rainer Böhme. 2013. Block convergence in repeated transform
coding. In International Conference on Acoustics, Speech, and Signal Processing.
IEEE, 3028–3032.

[25] Thomas Lane. 1994. Using the IJG JPEG library. https://www.freedesktop.org/
wiki/Software/libjpeg/, (accessed: Jan 9, 2023).

[26] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2019. Tranco: A research-oriented top sites ranking
hardened against manipulation. In Annual Network and Distributed System Secu-
rity Symposium. //tranco-list.eu/list/5Y5GN, (accessed: Mar 05, 2023).

[27] libjpeg turbo. 2017. What About mozjpeg? https://www.libjpeg-turbo.org/
About/Mozjpeg, (accessed: Feb 13, 2023).

[28] The libjpeg-turbo Project. 2022. libjpeg–turbo. https://libjpeg-turbo.org/
(accessed: Jan 28, 2023).

[29] Sean McKeown, Gordon Russell, and Petra Leimich. 2018. Fingerprinting JPEGs
with optimised Huffman tables. The Journal of Digital Forensics, Security and Law
13, 2 (2018).

[30] Mozilla Foundation. 2014. MozJPEG: Improved JPEG encoder. https://github.
com/mozilla/mozjpeg (accessed: Jan 28, 2023).

[31] Norman Nill. 1985. A visual model weighted cosine transform for image com-
pression and quality assessment. Transactions on Communications 33, 6 (1985),
551–557.

[32] Greg Notess. 2002. The wayback machine: The web’s archive. 26, 2 (2002), 59–61.
[33] Cecilia Pasquini and Rainer Bohme. 2018. Towards a theory of JPEG block

convergence. In International Conference on Image Processing. IEEE, 550–554.
[34] Randall Reininger and Jerry Gibson. 1983. Distributions of the two-dimensional

DCT coefficients for images. Transactions on Communications 31, 6 (1983), 835–
839.

[35] Thomas Stiitz and Andreas Uhl. 2005. Image confidentiality using progressive
JPEG. In International Conference on Information Communications & Signal Pro-
cessing. IEEE, 1107–1111.

[36] Twitter. 2023. Twitter Image Pipeline (a.k.a. TIP). https://github.com/twitter/ios-
twitter-image-pipeline, (accessed: Feb 13, 2023).

[37] W3Techs. 2022. Usage statistics of JPEG for websites. https://w3techs.com/
technologies/details/im-jpeg (accessed: Jan 9, 2023).

[38] GregoryWallace. 1992. The JPEG still picture compression standard. Transactions
on Consumer Electronics 38, 1 (1992), xviii–xxxiv.

[39] Jiangtao Wen, M. Luttrell, and J. Villasenor. 2000. Trellis-based R-D optimal
quantization in H.263+. Transactions on Image Processing 9, 8 (2000), 1431–1434.

[40] Andreas Westfeld. 2001. F5—a steganographic algorithm: High capacity despite
better steganalysis. In Information Hiding: 4th International Workshop, IH 2001
Pittsburgh, PA, USA, April 25–27, 2001 Proceedings. Springer, 289–302.

https://commons.wikimedia.org/wiki/Help:JPEG
https://commons.wikimedia.org/wiki/Help:JPEG
https://instagram-engineering.com/under-the-hood-instagram-in-2015-8e8aff5ab7c2
https://instagram-engineering.com/under-the-hood-instagram-in-2015-8e8aff5ab7c2
https://frescolib.org/
https://blog.cloudflare.com/parallel-streaming-of-progressive-images/
https://blog.cloudflare.com/parallel-streaming-of-progressive-images/
https://www.freedesktop.org/wiki/Software/libjpeg/
https://www.freedesktop.org/wiki/Software/libjpeg/
//tranco-list.eu/list/5Y5GN
https://www.libjpeg-turbo.org/About/Mozjpeg
https://www.libjpeg-turbo.org/About/Mozjpeg
https://libjpeg-turbo.org/
https://github.com/mozilla/mozjpeg
https://github.com/mozilla/mozjpeg
https://github.com/twitter/ios-twitter-image-pipeline
https://github.com/twitter/ios-twitter-image-pipeline
https://w3techs.com/technologies/details/im-jpeg
https://w3techs.com/technologies/details/im-jpeg

	Abstract
	1 Introduction
	2 Background
	2.1 JPEG in a Nutshell
	2.2 Progressive Mode
	2.3 Popular Implementations

	3 Understanding MozJPEG
	3.1 MozJPEG's Compression Pipeline
	3.2 Perceptual Model
	3.3 Trellis Optimization
	3.4 Scan Optimization

	4 Effects of MozJPEG
	4.1 Effect on File Size
	4.2 Effect on DCT Coefficients

	5 Discussion
	5.1 Implications for Steganography
	5.2 Implications for Forensics
	5.3 Implications for Watermarking

	6 Conclusion
	Acknowledgments
	References

