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Abstract—This paper contributes a systematic account of
transaction anonymization techniques that do not require trust in
a single entity and support the existing cryptographic currency
Bitcoin. It surveys and compares four known techniques, pro-
poses tailored metrics to identify the use of each technique (but
not necessarily its users), and presents longitudinal measurements
indicating adoption trends and teething troubles. There is a trade-
off between the choice of users’ preferred protection mechanisms
and the risk that pertaining transactions can be singled out, which
hurts privacy due to smaller anonymity sets unless a critical mass
adopts the mechanism.

I. INTRODUCTION

The anonymity of financial transactions in the most popular
cryptographic currency Bitcoin is far from perfect (cf. [2, 13,
20, 26, 29]). As Bitcoin is built around reusable pseudonyms,
its users enjoy a degree of privacy only until someone can
link their accounts and activities to a real-world identity. In
the worst case, it is possible to look up a user’s complete
transaction history in Bitcoin’s public ledger.

As a remedy, many Bitcoin users have started to rely on
centralized bitcoin mixers to make tracing their transactions
more difficult. Mixers are services that simply swap the coins
of different users. Users must trust the mix not to steal their
coins and not to keep any logs that would later allow to reverse
the mixing (cf. [8]). These shortcomings have lead to research
and development of a second generation of anonymization
techniques, which use cryptography and advanced protocols to
increase privacy while minimizing the amount of trust required
in a central party.

However, they do not eliminate trust in the behavior of others
entirely. In particular, many second-generation techniques have
special characteristics that allow to distinguish their use from
normal Bitcoin transactions. This reduces the anonymity set, a
fundamental concept in quantifying privacy [27], to the subset
of users of a specific technique, which (as we shall show in this
work) is a tiny subset of all transactions. Like in anonymous
communication systems, achievable anonymity in transaction
systems depends on the adoption of the specific techniques by
the community [12].

To better understand the degree of anonymity these systems
can provide today, we present a first systematic account
of second-generation anonymization techniques in Bitcoin,
consisting of theoretical considerations and longterm empirical
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measurements. To this end, we extract and parse more than
139 million Bitcoin transactions from 88 GB of blockchain
data and store them in a Neo4j graph database, allowing us to
efficiently query and traverse the transaction graph.

The paper is organized as follows. We review four relevant
second-generation anonymization techniques in Section IIL
Then, in Section IV, we propose metrics to identify their traces
in the public ledger based on individual characteristics. This
allows us to measure the use of these techniques in the wild.
We complement the paper with the necessary background in
Section II (safe to skip for readers familiar with Bitcoin privacy
concepts), a discussion with implications for future research
in Section V, and conclude in Section VI.

II. BACKGROUND

Bitcoin is a decentralized transaction system that combines
an append-only data structure, the public ledger known as
the “blockchain”, a distributed peer-to-peer network and a
probabilistic consensus protocol based on proof-of-work [25].
Owning a bitcoin means that the blockchain contains a digital
record stating that one’s account identifier, generally a public
key, has received funds in the past. Value is transferred through
transactions, which consist of a set of inputs and a set of
outputs. Outputs reassign bitcoins to a new account identifier
and inputs are references to previous outputs that are being
spent — completely — in the transaction.

To ensure that only a legitimate owner can spend bitcoins,
every output specifies redemption conditions. The input ref-
erencing it has to provide the required data to fulfill these
conditions. In most cases, the output will require that the input
provides a digital signature corresponding to a hash of a public
key. However, other types of conditions are possible as well.
Multisignature transactions require the input to provide a set of
signatures corresponding to multiple public keys (e. g., a 2-of-3
multisignature transactions requires signatures corresponding to
two public keys out of a list of three). Hash-locked transactions
specify a hash value in the output script, and the input must
provide the corresponding preimage in order to redeem the
coins. Transactions can furthermore set a locktime that renders
them invalid until a certain point in time is reached [10]. This
allows users to enforce that a series of transactions can only
be committed to the blockchain in a specified order.



Everyone can generate public keys autonomously and use
them as account identifiers in Bitcoin. Hence, without additional
knowledge, it is not possible to identify individual users
taking part in a transaction. However, while users may not
be identifiable when transacting solely in the Bitcoin system,
many real-world uses rely on exchanges or other intermediaries.
Unlike the core system, intermediaries are not decentralized
and are often subject to regulation, such as conventional anti-
money laundering rules or the Know-Your-Customer (KYC)
principle [7]. As a result, someone may establish a direct link
between (a subset of) a user’s Bitcoin accounts and her identity.
Once this relation is known, two common heuristics allow an
attacker to extend her knowledge from one account identifier
to others.

The first technique to group addresses belonging to the
same user is to compute the closure of an address [29, 30],
also known as multi-input heuristic. A user who controls
multiple bitcoins at different addresses may combine them
in a single transaction in order to make a larger payment. As
a user’s funds are often split up into different addresses after
conducting a number of transactions, combining the funds from
multiple accounts is a strong indicator for common ownership.
A second heuristic works by identifying change outputs [2,
20]. Change outputs are necessary because transactions have
to spend all value provided in their inputs. In fact, a scan of
the blockchain reveals that 79 % of all transactions created
until the end of June 2016 have exactly two outputs, of which
one is likely the change output whose funds belong to the
user who created the transaction. Although change address
detection was much easier in the early days of Bitcoin when
clients behaved more predictably, there remain a number of
ways to distinguish outputs, such as the occurrence of round
values, explicit locktimes, use of P2SH addresses, or bugs that
leak information (cf. [35]).

Once an attacker has associated a real-world identifier with
a set of account identifiers, she can analyze the transaction
behavior of those accounts, e. g., identify the recipient addresses
of transactions and the amounts transferred. Transaction graph
analysis may also help to reveal and break down obfuscation
patterns, such as merges and splits or peeling chains (cf. [20]),
and thereby deliver a complete picture of a user’s transaction
history.

To counter these deanonymization techniques, a first gen-
eration of mixers evolved, using indicative names such as
“Bitcoin Fog”, “BitLaundry” or “Bitmixer”. Most of them
collect funds from many different users and then pay back a
slightly smaller amount using coins from (supposedly) unrelated
transactions. When using these services, the user has to trust
them not to steal their coins, not to keep logs that would
allow deanonymization at a later point in time, and there is
no guarantee that the returned coins are unlinkable to the paid
ones. There is evidence that some mixers directly pay out coins
provided by the user, presumably due to a lack of liquidity [24].
Most importantly, mixers have a single point of failure and
therefore violate a core principle of Bitcoin. (The Mixcoin [8]

proposal tries to mitigate this risk using a reputation system,
but it has never been implemented.)

A second generation of anonymization techniques has
evolved that tries to eliminate the single point of failure while
being deployable in the current Bitcoin system.! These tech-
niques can broadly be categorized into low-level anonymization
techniques [3, 16, 17, 36] as well as high-level mixing protocols
[5, 15, 32], some of which are partially based on the low-level
techniques. As none of these high-level mixes has been fully
deployed so far, this work focuses on the low-level techniques.
These include Fair Exchange [3] and CoinSwap [17], which
allow users to swap coins while ensuring that no party can
steal them; CoinJoin [16], which aims at obscuring the flow
of funds by combining the payments of multiple users into
one transaction, and stealth addresses that aim at preventing an
attacker from linking real-world identifier to Bitcoin addresses
[36]. A disadvantage of these techniques, however, is that in
order to achieve their goals, they use constructions that differ
from the standard use of the Bitcoin network and thereby
are identifiable on the blockchain. As we are not aware of
any systematic account of second-generation anonymization
techniques, we set out to analyze these different techniques and
provide measurements based on the characteristics identified.

III. ANONYMIZATION TECHNIQUES

We now review the different second-generation anonymiza-
tion techniques and discuss their anonymity properties.

A. Fair Exchange

A simple idea to thwart blockchain analysis is to swap
one’s coins with another Bitcoin user. When Alice spends
Bob’s coins and Bob uses Alice’s coins, a passive attacker
interested in Alice’s spending behavior will no longer observe
her transactions, but will observe Bob’s instead. The Fair
Exchange protocol by Barber et al. [3] allows such a coin
swap between two parties in a trustless way using time- and
hash-locked transactions. The idea behind the protocol is that
when Bob claims the coins of Alice, he has to reveal a secret
that allows Alice to also claim coins from Bob. The protocol
(which we explain in a simplified way) is designed in such
a way that after running it, either both parties received what
they expected or get their funds back.

Protocol: At the first stage of the protocol, Alice and Bob
each generate a set of private values a; and b;. Then, they
engage in a cut-and-choose protocol that will provide Alice with
a set of correct hashes H(b;) and H(a;+b;). In the second stage
(cf. Figure 1), Alice and Bob lock their funds in hash-locked
transactions. Bob creates a transaction T p whose outputs can
be spent with either both signatures of Alice and Bob, or just
a signature of Alice and any value b;. To ensure that he gets
back his coins if Alice abandons the protocol, Bob also creates
a refund transaction Trp with a future locktime ¢ that returns
the coins to him. He lets Alice sign the refund transaction

!By contrast, another stream of research proposes modifications to the
protocol in order to improve privacy [4, 18, 21, 33]. Here we are only interested
in measuring deployed systems.
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Fig. 1: Transaction structure for a Fair Exchange including unpublished refund transactions (dashed, green)

before he publishes T-p. Alice then creates a similar claim
transaction T- 4 that can be redeemed with a signature of Bob
combined with either a signature of Alice or combinations of
two values a; + b; : Vi. She also creates a refund transaction
Tra with a locktime of ¢ 4+ 1 and only publishes T4 after
receiving a valid signature for T'r 4 from Bob. With this setup,
Bob can claim Alice’s coins by providing both his signature
and (a; + b;) : Vi in the redeeming transaction. Alice, in turn,
can compute any valid b; by subtracting a; from a; + b; and
then use just one of the values in order to claim Bob’s funds.
Anonymity: The anonymity of Fair Exchange is based on
two characteristics. First, Alice and Bob do indeed effectively
swap their coins. If they use different key pairs for the
claim transactions, there is no direct connection between the
transactions in the public ledger. Second, the transactions are
not directly linkable via the preimages a and b because the
connection is hidden within the hash and the sum of the values.
However, the scheme requires two very special output scripts
that, while not being directly relatable to each other, clearly
reveal the use of the scheme on the blockchain. Furthermore,
both claimed transaction outputs are likely to contain roughly
the same value. Hence, the size of the anonymity set is limited
to those transactions that contain similar redemption conditions
and values. Due to the locktime of the refund transactions,
claiming the funds must happen shortly after the funding
transactions have been published, further restricting the feasible
size of the anonymity set. This means that Fair Exchange can
only add anonymity if it is used by a large enough set of users
with swapping comparable values at roughly the same time.

B. CoinSwap

CoinSwap [17] allows two parties (Alice and Bob) to pay
each other without making a direct, traceable transaction.
Instead, a third person (Carol) receives coins from Alice and
pays Bob with coins that are not related to the ones she received
from Alice. Using multiple escrow transactions, this scheme can
conduct the swap without requiring trust between the parties.
However, if one of the three misbehaves, the swap may only
be resolved by using hash-locked transactions that are linkable
in the public ledger.

Protocol: To initiate a CoinSwap, Alice and Carol lock
their funds in a 2-of-2 multisignature output (cf. Figure 2).
Alice’s transaction 7T can only be redeemed with signatures
of both Alice and Carol, and Carol’s transaction 77 can only
be redeemed with signatures of both Carol and Bob. Then,
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Fig. 2: Transaction structure for a CoinSwap including unpub-
lished refund (dashed, green) and hash-locked (dotted, red)
transactions

Carol and Bob create time-locked refund transactions Tor and
T r that can be used to send back the locked funds to Alice
and Carol if a party abandons the protocol. The transactions’
locktimes must be carefully chosen in order to ensure fairness,
i.e., Tor must be locked longer than 7} r. After ensuring that
Tor and T are correctly signed, Alice and Carol publish T}
and 7T} on the network.

Next, Bob selects a random value z, computes H(x) and
sends this hash value to Alice and Carol. Alice creates a hash-
locked transaction 75 that allows Carol to spend the money
locked in T once she knows z. Carol computes a similar
transaction 73 that would allow Bob to redeem the funds in
Tj. In order to claim the coins, Bob must publish z, which
would allow Carol in turn to claim 73. However, providing z
in both transactions would allow to link these transactions in
the public ledger. These transactions are merely to claim funds
if a party misbehaves and should not be published otherwise.
Once Bob has received 75 from Carol, he can be certain that
he will receive his funds and will then give x to Carol. Without
learning z, Carol should not continue the protocol as she has
no way to pull her funds from Alice once she paid Bob.

When all parties are committed to the swap, Carol and Alice
create the final transactions to transfer funds to Bob and Carol.
Carol creates T, and sends it to Bob, who then signs the
transaction and publishes it to the network. Once confirmed,
Alice creates T5 and sends it to Carol, who in turn signs the
transaction and publishes it.
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Fig. 3: Two or more individual transactions (left) can be
combined in a single CoinJoin transaction (right)

Anonymity: The anonymity of CoinSwap relies on the
cooperation of the parties involved to avoid the use of the hash-
locked transactions, as well as on the indistinguishability of
the transactions from normal 2-of-2 multisignature transactions.
Because of the time-locked refund transactions, the anonymity
set is restricted to 2-of-2 multisignature transactions within a
certain time frame. Although the transactions are not directly
linkable in the blockchain by account identifiers, both 7T and
T may be linkable by the amount they transfer, as Carol likely
wants to receive the same amount from Alice that she pays to
Bob. Finally, Carol must not combine funds that are relatable
to account identifiers of Caroll with those of Carol2, as this
would allow linking both ends in the transaction graph.

C. CoinJoin

In CoinJoin, instead of having multiple users each sending
a single transaction, they create one joint transaction (cf.
Figure 3) [16]. As each transaction input has to provide a
valid signature independently of the other inputs, and every
signature is computed over the whole transaction, and is thereby
valid for only one exact combination of inputs and outputs,
participants in a CoinJoin can rest assured that neither of the
other participants is in a position to steal their funds. An attacker
cannot easily see which inputs and outputs belong together.
In case of widespread adoption, CoinJoin could reduce the
applicability of the multi-input deanonymization heuristic. It
also increases the difficulty of deriving to which address a user
sends her funds. The anonymity provided by CoinJoin hence
depends on the indistinguishability of these transactions from
normal transactions (preventing an attacker from excluding
CoinJoin transactions from the multi-input heuristic) and the
hardness to infer the true subsets of inputs and outputs [19].

It is easy to demonstrate that only combining the inputs and
outputs of multiple transactions does not necessarily increase
anonymity. When the amounts of inputs and outputs leak
sufficient information, matching those values allows an attacker
to infer which inputs and outputs belong together [19]. For
example, Alice might want to send 10 bitcoins to Carol and
has an input with a value of 11 BTC. Bob wants to send 0.5
BTC to Dave and therefore combines two inputs with a value
of 0.4 BTC each. It is easy to infer subsets in the resulting
CoinJoin transactions because the values match up nicely (cf.
Figure 4a). Now one could apply the multi-input heuristic only
to the inputs in each subset.

Maxwell [16] recommends a uniform output value for the
spending output because this creates an anonymity set of all
potential recipients. If we reduce the value of the spending
output in our example to 0.5 BTC (cf. Figure 4b), it is no
longer possible to derive one exact combination of subsets
for inputs and outputs. Instead, either 0.5 BTC output could
belong to the orange or the blue subsets. However, it is still
reasonable to assume that both inputs of 0.4 BTC have been
combined to produce one of the outputs spending 0.5 BTC,
hence we can still determine subsets for the inputs and infer
the change addresses in the outputs. The uniform output size
has, in fact, made it easier to detect the change addresses as
one can rule out the outputs with equal values.

In practice, subset matching must take into account that
transaction fees reduce the value of one or multiple output
subsets. To make this fuzzy matching even more difficult, one
can increase the number of participants and also align the
values of the inputs (ideally with a maximum difference in the
range of the transaction fee). If Alice uses two small inputs
with values of 0.2 BTC and 0.4 BTC instead of her large 11
BTC input (cf. Figure 4c), there are ten possible combinations
to partition the inputs and outputs into matching sets. However,
when taking into account that the transaction at hand is a “strict”
CoinJoin transaction, meaning that with n participants there
will be n outputs of uniform size, we can discard solutions
where not every output subset includes such an output. In the
example, this lets us infer that the 0.1 BTC output must be
the change of the 0.2 BTC input.

The original proposal claims that CoinJoin will render
the multi-input heuristic obsolete because a CoinJoin “is
externally indistinguishable from a transaction created through
conventional use” [16]. However, if participants agree on a
common output size, they form a distinct characteristic for the
final transaction that allows an attacker to distinguish between
CoinJoins and normal transactions. Furthermore, the difficulty
of finding matching subsets increases with the number of
participants. But in turn, this also makes the transaction stand
out more in comparison to all other transactions. As of June
2016, at least 90 % of all transactions have two or fewer
outputs. This means that the indistinguishability of a CoinJoin
transaction is inversely related to the difficulty of finding subsets
as well as to the anonymity set given by the number of potential
recipients.

D. Stealth Addresses

Stealth addresses [36] solve the problem that whenever
someone publicly posts a Bitcoin address to receive money,
anybody can look up the payments made to this particular
address. Even if an address is not published, but reused for
different recipients, multiple transaction can be associated with
the same address. Since offering unique Bitcoin addresses to all
potential senders can be challenging, stealth addresses enable
a recipient to publish a single static identifier. This identifier
allows each sender to derive a unique Bitcoin address that
cannot be associated with the public identifier. The recipient
of a transaction can compute the corresponding private key
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Fig. 4: Examples for subsets of CoinJoin transactions

belonging to the derived Bitcoin address based on additional
data that is included alongside the normal outputs using the
OP_RETURN statement.

Protocol: Stealth addresses are based on the Diffie—-Hellman
key exchange on elliptic curves. In the following, we present
the protocol as described in [36] and [9]. When Bob wants
to receive money whilst enjoying recipient anonymity, he first
generates an ECDSA key pair Q = d - G (G is a publicly
known generator) and then publishes the public key @ as static
identifier. Alice now generates her own temporary key pair
P = e-G and computes a shared secret ¢ = H(e- Q). She then
uses ¢ to derive a point Q' = Q+c-G, converts ' into a Bitcoin
address and sends bitcoins to it. In the transaction she also
includes the previously generated point P in an OP_RETURN
output. For each transaction on the blockchain that contains a
possible P, Bob computes ¢ = H(d - P) and checks whether
this allows him to derive a valid point @’ = (d+c)-G. Then he
can spend the funds at Q' by computing the matching private
key d =d+c.

Anonymity: Stealth addresses aim at preventing an attacker
from tying external information to an address that allow to
identify a Bitcoin user (see [35] for examples). If implemented
without further obfuscation, they are easily detectable on the
blockchain due to P being embedded in the OP_RETURN
output. However, while it is possible to detect the usage of a
stealth address, it is infeasible for a attacker to reconstruct the
original stealth address ) (or address pair (Q, R)). Hence, the
recipient enjoys recipient anonymity.

IV. MEASUREMENTS

We now propose metrics for quantifying the use of the
anonymization techniques and present measurements using
blockchain data extracted from the block files of the Bitcoin
core client. Our dataset includes all transactions until end
of June 2016 (block height 418,722).Whenever we report
transaction volumes, we aggregate data to periods of 1008
consecutive blocks (about one week). The number 1008
corresponds to exactly one half of a difficulty adjustment cycle
in the Bitcoin protocol and has become a common unit of
analysis for longitudinal studies [23].

A. Fair Exchange

Recall that the Fair Exchange protocol uses two special
redemption conditions. The first requires a set of values (a;+b;),

the second any value b;. The resulting output scripts hence have
a characteristic structure including an if-then—else block [3].

While normal clients typically consider these scripts non-
standard and do not relay these transactions, the Pay-to-Script-
Hash transaction type allows to use almost any type of script
as it reveals the full script only when spending an output that
has already been included in the blockchain. To identify Fair
Exchange transactions, we therefore analyze all non-typical
transaction scripts in transaction outputs as well as the scripts
provided in inputs that redeem Pay-to-Script-Hash outputs. In
total, this gives us 616,693 scripts.

After sanitizing by removing all data elements and extract-
ing the top 100 non-standard scripts, we evaluate each of
them manually. The most frequent non-standard script types
are empty OP_RETURN scripts (288,552 times) and scripts
containing OP_FALSE (219,319 times), but we also see a
few thousand strange scripts making use of multisignature
constructs. However, we are not able to find any script in this
set that matches the format required by Fair Exchange. As the
least popular script in this list has not been used more than
seven times, we conclude that Fair Exchange has not seen any
practical use to this day.

B. CoinSwap

Each CoinSwap uses two multisignature transactions that
require 2-of-2 signatures. Already in mid-2015 we observe
about 15 to 25 such multisignature transactions per block (we
report these measurements in Section A), which should be
sufficient for a potential use of CoinSwap. Therefore we have
developed five criteria to estimate the number of potential
CoinSwaps:

1) The protocol must finish before the locktime of the refund
transactions elapses. This prevents situations where Carol
payed Bob, but Alice reclaims her funds using the refund
transaction. The protocol does not specify a value for the
locktime, thus we assume that the redeeming transaction
must spend the output within a timespan of 30 blocks
(about 5 hours). This gives all parties more than enough
time to communicate their transactions and get them
confirmed while ensuring that funds are not locked up
for too long.

2) Our second criterium is the value of the output. If Alice
pays Carol 1 BTC, there is no reason for Carol to pay
2 BTC to Bob. To allow for Alice reimbursing Carol’s



transaction fees, we define that outputs may match if
their values differ up to 0.002 BTC, twice a fee of
0.001 BTC, which was common in 2013 and significantly
lower thereafter [23].

3) We require that the funding transactions for the 2-of-2
multisignature outputs must both have taken place before
one of them was spent again. This follows trivially from
the protocol as Alice, for example, would not pay Carol
before being certain that Carol also pays Bob.

4) We exclude any transactions that include an OP_RETURN
output as those hint at non-currency transactions (such
as Colored Coins, cf. [31]).

5) CoinSwap only provides anonymity if the two outputs
are not connected in the transaction graph. Therefore, we
ensure that any two outputs we compare are unconnected
by traversing the transaction graph backwards and
checking that the other output is not referenced in any
of the inputs of the preceding transactions.

Our proposed estimation method works as follows: First,
we extract all 2-of-2 multisignature outputs that have been
spent within 30 blocks in chronological order. We create a
pruned set by removing all outputs belonging to transactions
that have three or more elements in the (original unpruned)
set. The rationale is that while having more than one 2-of-
2 multisignature output in a transaction is fully compatible
with the scheme and might even help to hide the swap,
there exist some transactions that contain tens or hundreds
of multisignature outputs. As we cannot find a good reason
to build CoinSwaps of that size, we prefer to eliminate these
elements which would otherwise appear as outliers or spikes.
Finally, we check for each output in the pruned set whether
there is another output that fulfills the conditions outlined
above within a time frame of 30 blocks ahead of the block
height. The number of matches gives us an upper bound for
the number of potential CoinSwaps (i.e., it may serve as an
upper bound for the size of the anonymity set). It is possible,
but computationally more demanding, to tighten the bound by
finding the combinatorial solution.

Figure 5 shows the result of our estimation. It reports the
number of outputs for which we find a matching output (i.e.,
a potential CoinSwap) over time. There are almost no matches
before 2015, when the general usage of 2-of-2 multisignatures
has also been low. In 2015 there are on average only a few
matches per block. However, similar to the rise of 2-of-2
multisignature outputs in 2016 (cf. Section A) we observe a
strong increase in potential CoinSwap outputs in the first half
of 2016, to up to 50 matches per block.

In order to provide anonymity, these outputs must also match
the value a user wants to anonymize. The blue line in Figure 6
shows the distribution of the outputs’ values. 28 % of the
outputs have values below 0.01 BTC, and 59 % have values
below 0.1 BTC, which corresponds to at most a mid two-
figure USD amount at current market prices. This might be
sufficient for smaller trades, but is too low if people want to
anonymize larger transfers. The red line in Figure 5 shows
all potential CoinSwaps above 0.01 BTC (6 USD). We see
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that removing small outputs reduces the anonymity set only
slightly. Furthermore, larger sums can always be split into
multiple swaps, thereby increasing the anonymity set at the
cost of higher transaction fees.

As we are not aware of any services that simplify the creation
of CoinSwap transactions, we assume that most of the 2-of-
2 multisignature outputs are the result of normal use (e.g.,
usage of safe wallets or micropayment channels [14]) and do
not represent CoinSwaps. However, our measurements show
that there exists a large enough anonymity set for potential
CoinSwaps to hide.

C. CoinJoin

To measure CoinJoin transactions, we first define them using
a set of rules. As the minimal number of participants in a
CoinJoin is two, and if we exclude the special case where a
party spends exactly the amount she has available at one of her
inputs, a CoinJoin can be any transaction that has at least four
outputs: two for the actual spending and two for the change.
If each party claims two outputs, the number of inputs must
amount to at least half the number of outputs.



To rule out cases where a user combines multiple outputs
that belong to the same address or splits up her funds and
sends different values to the same address, we do not simply
look at the number of inputs and outputs but instead require
that the number of unique addresses matches those thresholds.
Next, we filter out transactions that send to addresses starting
with 1dice as those are (in most cases) deposit addresses for
the gambling service SatoshiDice and known to cause false
positives [19]. Again, we exclude non-currency transactions,
i.e., those that contain an OP_RETURN output.

By participating in a few CoinJoin transactions ourselves, we
discover that different services interpret the recommendation for
uniform sizes (cf. Section III-C) differently. While J oinMarket?
ensures that its spending outputs all have the same size (cf.
[22]), Shared Coin? produced transactions that do not have
this property. We are especially interested in the share of these
“strict” CoinJoin transactions where each spend has the same
value and therefore provide an additional measurement of those.

Figure 7 shows the number of transactions meeting these
rules over time. For comparison, we also plot the amount of
“large” transactions, i.e., all transactions with more than two
inputs and more than four outputs. The number of potential
CoinJoin transactions grew from zero per block to relatively
stable values between 10 and 15 transactions per block in 2014
and 2015. Observe that only after the technique was proposed
in August 2013, the number of matching transactions went up.
In comparison, the number of all large transactions is between
five to ten transactions per block higher. The number of “strict”
CoinJoin transactions is rather low, mostly between one and
two transaction per block.

Inspecting the distribution of output values of CoinJoin
transactions, we see a slight tendency towards “round” output
sizes (cf. plateaus in Figure 6). Output sizes such as 0.01 BTC
or 1 BTC are chosen more often than unround values.

Given that we see such a large share of potential CoinJoin
transactions, it would be interesting to further determine how
many of them are indeed CoinJoin transactions and how
many might simply look like they are. Additional information
available on blockchain.info helps to identify transactions that
were created using Shared Coin, which was probably the most
popular CoinJoin service in the past years. Because Shared
Coin was integrated into the online wallet of blockchain.info,
transactions created by the service should be relayed by
blockchain.info itself first. We sample 10,000 transactions be-
tween August 30, 2013 and June 30, 2015 from the transactions
which we identified as potential CoinJoin transactions and
inspect the IP address from which blockchain.info has first
heard of a transaction by parsing publicly available data from
their website.

Figure 8 shows the share of CoinJoin transactions originating
from blockchain.info over time. In total, 57 % of our sampled
transactions can likely be attributed to Shared Coin. The graph
exhibits a few interesting shifts. Shared Coin was available

Zhttps://github.com/JToinMarket- Org/joinmarket, retrieved on 2016-07-26
3This services was available at http://sharedcoin.com but has been discon-
tinued in the first half of 2016.

to users of the online wallet since November 2013 [6]. The
increase in the share can hence be explained with the release
of the service. In January 2015 the share of Shared Coin
transactions dropped by almost two thirds with no significant
change in the number of CoinJoin transactions. We conjecture
that this is due to a change in the implementation that added
support for additional API endpoints, increasing the number of
servers that push the transaction into the network [28]. When
we compute the share of Shared Coin transactions for our
CoinJoin transactions created with Shared Coin in mid-2015,
only a third of those transactions are identified as being relayed
by blockchain.info. This number matches the estimated share
over the course of 2015 surprisingly well.

D. Stealth Addresses

Stealth payments can be detected by searching for raw public
keys (or an extended format used by Dark Wallet [9]) in
OP_RETURN outputs. Figure 9 shows the total number of
detected stealth outputs per period. The first stealth transaction*
took place in February 2014, even before the release of
version 0.9.0 of Bitcoin Core, which added transactions with
OP_RETURN outputs to the list of standard transaction types.
The overall usage of stealth addresses is extremely low for the
whole time frame, between zero and 60 transactions in each
period. The volume peaked to a maximum of 180 transactions
in the second quarter of 2015 for no identifiable reason.
Perhaps somebody tested stealth addresses as part of a wallet
implementation.

A reason for the low adoption rate of stealth addresses
could be the lack of a common standard. This, for example,
delayed and hindered the integration of stealth addresses into
the popular wallet software Electrum (cf. [1]). While stealth
addresses provide a unique and pretty elegant opportunity to
increase the privacy of users, they currently seem to have no
practical relevance.

V. DISCUSSION

An essential property of anonymity is that it cannot be
achieved in isolation. Only when a group of entities shares
a set of characteristics, they form an anonymity set in which
the individual enjoys a level of indistinguishability [27]. For
Bitcoin, this yields a fundamental problem: while individual
transactions are already highly distinguishable due to their
unique transaction histories, anonymization techniques add
further complexity to the system, and individual techniques
hurt each other’s effectiveness due to their direct competition.
Complexity originates from the need to design protocols that
avoid single points of failures, which in turn exhibit special
properties that can be exploited to reduce their anonymity
set. It furthermore limits the rate of adoption when users
need to install specialized software, and opens the doors for a
multitude of operational risks. Competition and incompatibility
among different anonymization techniques hurt anonymity in
that they partition the set of users and thereby reduce the

4ID: 63e75e43de21b73d7eb0220cedddcfa5fcT717a8decebb254b31efl
3047fa518
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size of the anonymity set further. As a result, and standing
against fundamental principles of Bitcoin, maintainers of the
system should be aware that giving users the choice of which
anonymization technique to use may not be in their own best
interest.

A major challenge in the design of anonymizing techniques
is the quantification of the degree of anonymity they offer.
Established notions of and metrics for anonymity (e. g., based
on entropy [11, 34]) and unlinkability in related subfields do
not directly apply to cryptographic currencies where coins
are ascribed value because they are verifiably linkable to
their transaction history. Moreover, Bitcoin transactions cannot
be analyzed in isolation. The users’ anonymity is not only
influenced by the individual characteristics of their transactions,
but also the unique context in the overall transaction graph.
This yields interesting novel trade-offs. CoinJoin transactions,
for example, may provide low “local” anonymity (i. e., being
less resistant to subset matching) but thereby better improve
overall anonymity for their higher indistinguishability from
“normal” transaction behavior. Finding new models to study,
quantify and measure these different aspects, both with regard
to local characteristics of a transaction and its overall context
in the transaction graph, is an interesting avenue for future
research.

Besides developing better notions of anonymity for dis-
tributed transaction systems, there remains the potential to
conduct more specific analyses of the techniques presented.
One possibility would be to identify aborted CoinSwaps based
on hash-locked or time-locked transactions in order to quantify
the ability of participants to find reliable mixing partners or
the utility of reducing the trust needed for mixing. Blockchain-
based information could also be enriched with information from
monitoring the Bitcoin peer-to-peer network, e. g., to correlate
specific transactions with timing or location information
relatable to individual participants. A major limitation of such
measurement studies, including our own, is, however, the ability
to verify the findings. Due to a lack of implementations for most
techniques there is little ground truth data available. And trying
to study especially those transactions that aim at concealing
spending behavior also does not make verification easier.

In the end, successful anonymization does not only rely
on secure protocols and correct implementations of those,
but must also address the trust issues that remain in second
generation anonymization techniques. While the techniques
presented remove the need to entrust a single third party



with one’s coins, they do not necessarily protect against other
participants in the protocol from revealing private information
that can reduce one’s own privacy, both unintentionally and
intentionally. Notions of reputation or sanctions (cf. [5, 8]) can
help to mitigate these issues and should be an integral part of
high-level protocols built upon these techniques.

VI. CONCLUSION

This paper contributes a first systematic account of second-
generation anonymizing techniques in Bitcoin that do not put
users’ funds at risk and can be used with the current system.
The range of available techniques is not extensive, but offers
enough to tackle different aspects of deanonymization. We
propose metrics to quantify the use of these techniques and
present measurements. We find that CoinSwap has a potentially
large anonymity set, chiefly because it blends in with normal
2-of-2 multisignature outputs. Stealth addresses are promising
to increase the privacy of users who need publicly-known
addresses, but a lack of consensus on their technical details
is responsible for its low usage. CoinJoin is the most popular
technique so far. It can provide different variants of anonymity,
but even this technique is not yet widely supported.

To move research on the state of anonymity in Bitcoin
forward, we need a better assessment of the overall degree
of anonymity that not only takes single transactions but their
contexts into account, as well as timing-based and inference
attacks. If such work continues the tradition of finding more
effective deanonymization approaches, the maintainers of the
system may want to consider tackling the issue more directly
in the protocol.
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