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ABSTRACT
Although several methods have been proposed for the detection of

resampling operations in multimedia signals and the estimation of

the resampling factor, the fundamental limits for this forensic task

leave open research questions. In this work, we explore the e�ects

that a downsampling operation introduces in the statistics of a 1D

signal as a function of the parameters used. We quantify the statisti-

cal distance between an original signal and its downsampled version

by means of the Kullback-Leibler Divergence (KLD) in case of a

wide-sense stationary 1st-order autoregressive signal model. Values

of the KLD are derived for di�erent signal parameters, resampling

factors and interpolation kernels, thus predicting the achievable

hypothesis distinguishability in each case. Our analysis reveals

unexpected detectability in case of strong downsampling due to the

local correlation structure of the original signal. Moreover, since

existing detection methods generally leverage the cyclostationarity

of resampled signals, we also address the case where the auto-

covariance values are estimated directly by means of the sample

autocovariance from the signal under investigation. Under the con-

sidered assumptions, the Wishart distribution models the sample

covariance matrix of a signal segment and the KLD under di�erent

hypotheses is derived.
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1 INTRODUCTION
�e detection of resampling operations in 1D and 2D signals is

of great interest in multimedia forensics, as it can indicate that

the object under investigation has been resized or subject to other
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geometric transformations (e.g., rotation in case of images). Multi-

ple methods have been proposed for this task, relying on di�erent

rationales.

When a signal is resampled, its samples are combined by means

of an interpolation kernel to obtain new signal values located in a

di�erent la�ice with respect to the original ones. Commonly used

kernels periodically employ the same interpolation coe�cients,

thus introducing into the signal periodic linear correlations. �is

e�ect is exploited by most of existing techniques, which seek for

periodicities in the signal itself [22] or in a linear predictor resid-

ual [14–16, 18, 23]. In doing so, a frequency analysis is generally

employed for the detection, which can also provide an (unavoid-

ably ambiguous [14]) estimate of the resampling factor. Moreover,

researchers have recently tackled the problem with di�erent ap-

proaches, e.g., by relying on set-membership theory [24], the use

of SVD decomposition [21], or the measurement of the normalized

energy density [9].

In parallel, the community in multimedia forensics has started to

study forensic tasks from a more fundamental perspective, with the

goal of assessing the performance limits of detection techniques

[1, 4, 5]. In an hypothesis testing framework, this can be inter-

preted as quantifying the statistical distance between hypotheses

and determine under which conditions they are actually distin-

guishable. In [5], the Kullback-Leibler Divergence (KLD) between

the distributions of the signal under investigation (or a feature rep-

resentation of it) and di�erent processing hypotheses is proposed

as a distinguishability measure, and a number of practical scenarios

are addressed [6]. In these works, the authors are particularly inter-

ested in the distinguishability of operator chains and they consider

di�erent combinations of quantization, noise addition, Gamma cor-

rection and second-order �nite impulse response (FIR) �ltering

operations.

However, to the best of our knowledge, such perspective has not

been adopted yet to the case of resampling detection, for which

performance limits are for now empirically established by state-of-

the-art techniques. In this work, we start addressing this gap by

quantifying how much the statistics of a 1D downsampled signal

deviates from a not downsampled one. Under certain assumptions,

commonly adopted in the literature, the distribution of the signal

under the hypothesis of no downsampling and the hypothesis of

downsampling with a certain factor and interpolation kernel is

derived. We show that it is possible to compute the KLD in each

case as a function of the original signal parameters, revealing the

key role of the local correlation among samples. E�ects of pre�lter-

ing (i.e., the use of a linear predictor) are also studied by means of

this measure. Moreover, given the role of the signal’s second-order

moments (variance and autocovariance) in detection techniques,



the KLD analysis is extended to the distribution of standard covari-

ance matrix estimators as a function of the number of independent

observations available.

It is to be noted that this work does not propose practical de-

tection algorithms but aims to the assessment of the theoretical

di�culties encountered. At the same time, it identi�es space for

improvement to be �lled with not yet invented detectors.

�e paper is structured as follows: in Section 2 we illustrate the

perspectives adopted in our work and their relationship to exist-

ing studies; in Section 3, we formulate the resampling operation

and recall the periodicity properties generally exploited by exist-

ing detectors; in Section 4, we formalize the assumptions on the

original signal (in accordance with previous approaches in the liter-

ature), and analyze the e�ects of resampling in the signal statistics.

�ese �ndings are then exploited in Section 5 to formulate di�erent

hypothesis tests and evaluate hypotheses distinguishability when

varying the parameters involved. Finally, Section 6 concludes the

paper.

2 PROPOSED APPROACH IN RELATION TO
PRIORWORK

We now describe and motivate the main novelties characterizing

our study and how they are related to previous work:

• We directly study the statistics of a segment of the 1D signal under

investigation under di�erent hypotheses, although many state-of-

the art methods perform a frequency analysis [14, 18, 23]. �is is

due to the fact that deterministic processing (like DFT or other

transformations) cannot increase the hypothesis distinguishability

in terms of KLD [3, Lemma 1]. �us, from an information-theoretic

perspective, the best choice to measure the information contained

in a signal segment is to study its very distribution.

• According to assumptions already adopted in the literature [14,

16, 23], we consider the original signal as a wide sense stationary

autoregressive model of the 1st order (1-AR) with Gaussian inno-

vations. In this se�ing, we show how the second-order moments

are transformed by the resampling operation. In particular cases,

we analytically explore the role of the correlation coe�cient of the

1-AR model in the statistical properties of the resampled signal.

• State-of-the-art techniques are generally evaluated by considering

equally spaced values of the resampling factor in a certain range.

However, it has been shown that the e�ects of resampling depend

on the representation of the resampling factor as ratio of coprime

natural numbers, where the numerator determines the period of

the periodic structures introduced. For this reason, we employ

sequences of rational numbers with the same numerator in our

tests, thus di�erentiating resampled signals with the same period-

icities. Such resampling factors are used, together with the chosen

interpolation kernel, to de�ne hypothesis tests and evaluate their

distinguishability in terms of KLD.

• In addition to the distribution of the signal segment, we also study

the distribution of the related prediction error computed in the

same location and the distribution of a standard covariance matrix

estimator obtained from a number of independent observations.

Hypothesis distinguishability is also evaluated in these cases.

• In our analysis, we consider 1D real-valued signals, thus not ac-

counting for quantization e�ects. Future work will be devoted to

deal with quantization e�ects in the signal under investigation, as

it is explored in [20, 24].

3 PRELIMINARIES
Let s : R −→ R represent a 1D real-valued signal. We suppose

(without loss of generality) that the signal is originally sampled

at integer coordinates, i.e., before resampling the values s (n) with

n ∈ Z are available. In this case, a resampling operation with factor

ξ can be seen as a map from the integer la�ice Z to the la�ice

ξ−1Z, where ξ < 1 corresponds to downsampling and ξ > 1 to

upsampling. In fact, every value s (nξ−1) is obtained starting from

the original samples s (n) as

s (nξ−1) =
∑
n′∈Z

h(nξ−1 − n′)s (n′) (1)

hmin = −1 hmax = 1

(a) Example of an interpolation kernel.

0 1 2 3 4 5 6 7

0ξ−1
1ξ−1

2ξ−1
3ξ−1

4ξ−1
5ξ−1

Sh (1, 3, 4) Sh (2, 3, 4) Sh (3, 3, 4) Sh (4, 3, 4) Sh (5, 3, 4)

Hh (1, 3, 4) Hh (2, 3, 4) Hh (3, 3, 4) Hh (4, 3, 4) Hh (5, 3, 4)

Sh (4, 3, 4) = Sh (1, 3, 4) + 4 Hh (4, 3, 4) = Hh (1, 3, 4)

(b) Representation of the sets Sh and Hh . �e shi�ed interpolation kernel, centered at each resampled

values, is plo�ed in red.

Figure 1: Example of resampling operation with ξ = p
q =

3

4
and an interpolation kernel with support in ] − 1, 1[.
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where h : R −→ R is an interpolation kernel and the values

h(nξ−1 − n′) are the interpolation coe�cients.

Starting from this de�nition, in the following section we derive

the periodicity properties commonly exploited by existing detectors,

and then express the resampling operation in matrix form.

3.1 Periodicity properties
Common interpolation kernels have �nite support ]hmin,hmax[,

thus the sum in (1) is also �nite. Moreover, the resampling factor

ξ is in practice expressed in rational form as ξ =
p
q where p and q

are coprime, and we will equivalently use the notation ξ or p/q in

the following. �is allows us to derive properties from (1):

• �e resampled value s ((n + p)ξ−1) is obtained by combining sam-

ples whose indices are shi�ed by q with respect to the ones used

to calculate s (nξ−1). In fact, we can obtain the set of values n′ that

are actually employed in the sum in (5) as a function of n, p and q
as follows:

Sh (n,p,q) =

{
n′ ∈ Z

�����
n
q

p
− n′ ∈]hmin,hmax[

}
(2)

=

{⌈
n
q

p
− hmax

⌉
,

⌈
n
q

p
− hmax

⌉
+ 1, . . . ,

⌊
n
q

p
− hmin

⌋}
.

It is easy to show that Sh (n + p,p,q) contains the very same

elements of Sh (n,p,q) incremented by q.

• �e interpolation coe�cients used in the resampling operation

are periodic with period p. From (1) the interpolation coe�cients

used for s (nξ−1) are given by

Hh (n,p,q) =

{
h

(
n
q

p
− n′

) �����
n′ ∈ Sh (n,p,q)

}
(3)

so that, for the previous point,

Hh (n + p,p,q) =

{
h

(
(n + p)

q

p
− n′

) �����
n′ ∈ Sh (n + p,p,q)

}
(4)

=

{
h

(
n
q

p
+ q − (n′ + q)

) �����
n′ ∈ Sh (n,p,q)

}
=

{
h

(
n
q

p
− n′

) �����
n′ ∈ Sh (n,p,q)

}
≡ Hh (n,p,q).

An example in case of ξ = n/p = 3/4 and an interpolation kernel

with support in ] − 1, 1[ is reported in Fig. 1.

As it was �rst observed in [18] for the application in image foren-

sics, this leads to periodic linear correlations in the resampled signal,

which motivates the use of a linear predictor as a detection approach

[14, 15, 18]. Given a set of prediction weights β−T , . . . , βT , β0 = 1,

the prediction error

e (nξ−1) =
∑
|t | ≤T
t ∈Z

βt s (nξ
−1 + tξ−1) (5)

is used as a measure of the linear correlation between the inter-

polated value s (nξ−1) and its 2T closest neighbors. A frequency

analysis is then generally performed on e (·) to identify periodicities

due to resampling operations.

3.2 Matrix formulation
As noted in [14], both (1) and (5) are linear combinations of the

original samples s (n) with coe�cients that depend on ξ , h and the

βt . �us, it is convenient to consider the original signal as a �nite

vector and express the resampling operation and the prediction

error computation in matrix form. Without loss of generality, we

can de�ne the vector s = [s1, . . . , sN ] where sn � s (n). Fixing the

interpolation kernel with �nite support h(·) and the resampling

factor ξ = p/q, the vector s can be linearly transformed according

to (1) to obtain a vector r = [r1, . . . rM ] containing the resampled

signal. �e component r1 is the �rst interpolated value that can

be obtained from the samples s (n),n ≥ 1, and rM is the last inter-

polated value that can be obtained from the samples s (n),n ≤ N .

�e correspondance between the indices of r and the multiples of

ξ−1
in (1) depends on both the support of h and the value of ξ (for

instance, in Fig. 1 we have that r1 = s (1ξ−1), but in case of ξ > 1

also s (0) would be necessary to compute s (1ξ−1), so r1 = s (2ξ
−1)),

but this does not compromise the generality of our analysis.

�e resampling operation can then be wri�en as

r = Cs, (6)

where eachn-th row of the matrixC contains the values ofHh (n,p,q)
at the locations contained in Sh (n,p,q). �us, its entries depend

on both ξ and h, so C = C (ξ ,h), and its size M × N is such that

M < N in case of downsampling and M > N in case of upsampling,

as represented in Fig. 2.

rM

1

= CM

N
sN

1

(a) Downsampling

rM

1

=

CM

N

sN

1

(b) Upsampling

Figure 2: Resampling matrix transformation.

Because of the previous considerations, the nonzero entries in the

rows of C will be the same every p rows, but shi�ed by q positions

to the right. For instance, for a linear interpolation kernel h and
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ξ = p/q = 3/4, we have

C
(

3

4

,h
)
=



2/3 1/3 0 0 0 0 . . .

0 1/3 2/3 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 0 0 2/3 1/3 . . .

0 0 0 0 0 1/3 . . .
...

...
...
...
...

...
. . .



. (7)

Moreover, the computation of the prediction error in (5) can be

seen as a discrete convolution of the resampled signal with vector

[β−T , . . . , βT ]. In fact, by removing the condition that β0 = 1,

the prediction error is essentially a linearly �ltered version of the

resampled signal and in the literature such operation is also referred

to as pre�ltering [23]. �en, the elements of r are transformed as

e = Br, (8)

where B is a (M − 2T ) ×M matrix such that

B =



β−T . . . . . . . . . βT 0 . . . . . . . . . . . .

0 β−T . . . . . . . . . βT 0 . . . . . . . . .

0 0 β−T . . . . . . . . . βT 0 . . . . . .
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 β−T . . . . . . . . . βT


(9)

and e containsM−2T samples of the prediction error corresponding

to the central indices of r.
Finally, the whole process can be summarized as

e = As, (10)

where A = BC and e ≡ r if no pre�lter is applied.

4 ANALYSIS OF SECOND-ORDER MOMENTS
AND ASSUMPTIONS ON THE SIGNAL

Several approaches rely on the assumption that the original signal is

a wide sense stationary (WSS) process [14, 16, 23], i.e., the expected

value E{s (k )} and the autocovariance E{(s (k ) − E{s (k )}) (s (k + t ) −
E{s (k + t )})},∀t ∈ Z, are constant over k ∈ Z. �is allows us to link

the periodicity of the interpolation coe�cients to the periodicity of

second-order moments in the resulting resampled signal.

In fact, in [19] the authors show that a multirate system per-

forming sampling rate conversion by a factor p/q on a WSS signal

produces a cyclostationary signal with period p/ gcd(p,q). With p
andq being coprime in our case, this means that for the components

of the vector r we have

Cov{rk , rk+t } = Cov{rk+jp , rk+jp+t } (11)

for every integers j and t .
Further results have been obtained by extending the de�nition of

both (1) and (5) to the whole real line instead of the discrete la�ice

ξ−1Z. In [22, 23], it is proved that the interpolated signal s (x ),x ∈ R,

de�ned as in (1) is cyclostationary with period 1, i.e., the original

sampling rate. �e author of [14] shows that the variance of the

prediction error e (x ),x ∈ R, is also periodic with period 1 regardless

of the prediction weights, thus establishing a link between methods

based on the prediction error and the ones based on a pre�ltering

operation like discrete di�erentiation [7, 11, 16].

However, the vector r contains only values of s (·) sampled at

multiples of ξ−1
, so that the periodicity with 1 is not observable.

In other words, by considering the indexing of r, the periodicity

would be non-integer with period ξ . In fact, the authors in [22, 23]

denote this property as “almost cyclostationarity”, referring to the

fact that the available vector r would have non-integer periodicity

ξ , in contrast with the “pure cyclostationarity” with integer period

p proved in [19].

It is common in the literature to assume statistical models for the

distribution of the original signal. While a white Gaussian model

would not be accurate, 1D autoregressive models of �rst-order (1-

AR) with Gaussian innovations [12] have been used to capture

local correlation in 1D and 2D signals [23]. Moreover, it is also

commonly assumed to deal with zero-mean signals, by implicitly

supposing that the mean value can be subtracted from the signal

under investigation. We can formalize these properties as:

Assumption 1. �e original signal is a WSS 1-AR model with
Gaussian innovations, i.e.:

sn = ρsn−1 + εn (12)

where ρ is a correlation coe�cient satisfying |ρ | < 1 and εn is a
zero-mean Gaussian random variable with variance σ 2

ε such that
εn , εn′ are independent ∀n,n′.

Under Assumption 1, the covariance between samples at distance

t ∈ Z is given by

Cov{sn , sn+t } =
ρ |t |

1 − ρ2
· σ 2

ε , ∀n ∈ Z, (13)

and the covariance matrix of the vector s has the form

Σs =



1

1−ρ2
σ 2

ε
ρ1

1−ρ2
σ 2

ε
ρ2

1−ρ2
σ 2

ε . . .
ρN−1

1−ρ2
σ 2

ε
ρ1

1−ρ2
σ 2

ε
1

1−ρ2
σ 2

ε
ρ1

1−ρ2
σ 2

ε . . .
ρN−2

1−ρ2
σ 2

ε
...

. . .
. . .

. . .
...

ρN−2

1−ρ2
σ 2

ε
...

ρ1

1−ρ2
σ 2

ε
1

1−ρ2
σ 2

ε
ρ1

1−ρ2
σ 2

ε
ρN−1

1−ρ2
σ 2

ε . . .
ρ2

1−ρ2
σ 2

ε
ρ1

1−ρ2
σ 2

ε
1

1−ρ2
σ 2

ε



. (14)

Moreover, by iterating (12) we have that each sn is a linear com-

bination of independent Gaussian realizations, so that every subset

of samples is a multivariate normal random variable. �us, the

covariance matrix Σs completely determines the distribution of the

random vector s and we can write

s ∼ NN (0, Σs), (15)

where NN (µ, Σ) indicates an N -dimensional normal distribution

with mean vector µ and covariance matrix Σ, and 0 is a vector of N
zeros.

By the de�nition of multivariate normal distributions, the trans-

formed vector r is also multivariate normal, so its distribution is

again determined by its covariance matrix:

r ∼ NM (0, Σr). (16)

�e entries of Σr can be obtained by computing

Cov{rk , rk ′ } = E{rk , rk ′ } (17)

4



for two arbitrary indices k,k ′ ≤ M . Considering that every rk is

the scalar product of the k-th row of C and s, equation (17) can be

expanded to obtain the following equality:

Σr = CΣsC
T . (18)

However, in order for the multivariate normal to be non-degenerate,

the covariance matrix must be positive de�nite. �e resulting matrix

Σr = CΣsC
T

preserves the positive de�niteness of Σs if and only if

the matrix CT has rank equal to M [13, p. 431, Obs 7.1.8]. �is can

only hold in case of downsampling, while in case of upsampling

CT can have at most rank equal to N < M . �is is crucial as in

the degenerate case the multivariate normal vector does not have

a density and, thus, the KLD is not de�ned. In our analysis we

will focus on downsampling, while we leave for future work the

problem of dealing with upsampling matrices.

5 HYPOTHESIS TESTS AND
DISTINGUISHABILITY

A forensic analysis consists in deciding whether the signal under

investigation has been resampled or not. In particular, the decision

is usually made on a segment of the signal, that we can represent as

a vector x of M contiguous samples starting at an arbitrary position.

Our previous analysis now allows us to obtain information on the

binary hypothesis test

H0: x has not been downsampled. (19)

H1: x has been downsampled

with factor ξ and interpolation kernel h.

As observed in [4], the decision between H0 and H1 on x can be

taken according to the distribution of x itself or a related feature

representation Fx de�ned in a certain space Ω under the two hy-

potheses. �en, we can de�ne P0 (·), P1 (·) as the distributions of Fx
under H0 and H1, respectively. Motivated by known results in in-

formation theory, the author of [5] then suggests the use of KLD as

a measure hypotheses distinguishability, which in the continuous

case is de�ned as

KLD(P0, P1) �

∫
Ω
P0 (Fx) log

2

P0 (Fx)

P1 (Fx)
dFx, (20)

where we consider the logarithm to the base 2, without loss of

generality.

In the next subsections, we explore the behavior of the KLD

for di�erent representations Fx for which we derive P0 and P1. In

particular, we will �rst focus on the use of the signal itself (Section

5.1) or a pre�ltered version of it (Section 5.2), and then we consider

the case where the analyst estimates the second order moments of

the signal from the observations available (Section 5.3). While the

�rst two cases result in a multivariate normal distribution of the

vector Fx, we will see that in the third case Fx is a matrix following

a Wishart distribution.

We will suppose that Assumption 1 holds, thus relying on the

analysis in Section 4. We �x M = 30, i.e., we evaluate the ability of

taking a forensic decision on a signal segment of 30 samples. More-

over, we have selected a �xed location of the samples in the signal

under investigation in such a way that, in case downsampling oc-

curred, no original samples with indices < 1 would be necessary to

obtain the resulting downsampled signal or its pre-�ltered version.

Clearly, the test (19) is determined by the chosen interpolation

kernel h and the resampling factor ξ < 1. �us, we consider three

commonly used interpolation kernels (linear, cubic, Lanczos) repre-

sented in Fig. 4. �en, we vary the value of the resampling factor ξ
by considering sequences of rational numbers with the same nu-

merator p lying in the interval [0, 1]. In fact, we have seen that the

resampling factor is in practice expressed as a rational number p/q,

so we consider the sequences

ξa
1:10
=

{
2
a

q

�����
q = 2

a + 1, . . . , 2a + 10 ∧ gcd(2a ,q) = 1

}
, (21)

for a = 0, 1, . . . , 8, as represented in Figure 3. By doing so, we

can separately observe resampled signals with the same pure cy-

clostationarity. In fact, only combinations of coprime numerator

and denominator are included. �ere is no intersection among

sequences for di�erent values of a.

0 0.2 0.4 0.6 0.8 1

ξ

0

2

4

6

8

a

Figure 3: �e sequences ξa
1:10

for a = 0, . . . 8.

5.1 Signal distribution
We �rst analyze the case where the decision on x is taken according

to the multivariate distribution of x itself, i.e. F (x) = x. We have

already derived P0 and P1 in Section 4 and observed that in both

cases it is a multivariate normal distribution, but with di�erent

covariance matrix. By denoting with Σ0 and Σ1 the covariance

matrices under H0 and H1, we have that Σ0 is an M × M matrix

de�ned as in (14), thus Σ0 = Σ0 (σε , ρ). Depending on h and ξ ,

the hypothesis H1 indicates that x is the outcome of a resampling

operation from a certain number N of original samples, so

Σ1 = CΣ
ex

0
CT , (22)

where C is the M × N resampling matrix and Σex

0
is also de�ned as

in (14) but has size N × N , thus Σ1 = Σ1 (σε , ρ, ξ ,h).
�e test (19) can then be rewri�en as

H0: x ∼ NM (0, Σ0 (σε , ρ)). (23)

H1: x ∼ NM (0, Σ1 (σε , ρ, ξ ,h)).

In case of multivariate Gaussian, the KLD has the following

expression [17]:

KLD(NM (0, Σ0),NM (0, Σ1)) =
1

2

[
tr(Σ−1

1
Σ0) + log

det(Σ1)

det(Σ0)
−M

]

(24)

In order to have a consistent evaluation, we have �xed the loca-

tion of the M = 30 samples contained in x for every combination of
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Linear kernel:

h (x ) =
{

1 − |x | −1 ≤ x ≤ 1

0 otherwise

Cubic kernel (c = 2):

h (x ) =



(c + 2) |x |3 − (c + 3) |x |2 + 1 |x | ≤ 1

c |x |3 − 5c |x |2 + 8c |x | − 4c 1 ≤ |x | ≤ 2

0 otherwise

Lanczos kernel (c = 3):

h (x ) =
{

sinc(x )sinc(x/c ) −c ≤ x ≤ c
0 otherwise
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Figure 4: �e three kernels used in our tests are reported.
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Figure 5: KLD values are reported as a function of ξ for di�erent values of ρ (row-wise) and di�erent interpolation kernels
(column-wise). Di�erent marks and colors indicate the di�erent sequences ξa

1:10
, according to the legend. �e KLD in each

case refers to the distributions of aM-variate vector withM = 30 under the two hypotheses.
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h and ξ , so that N and Σex

0
are consequently determined to obtain

the distribution of x under H1.

From (23) we see that the test also depends on the signal param-

eters σε , ρ and their in�uence on KLD should be studied. However,

we can �rst note that the following Lemma holds:

Lemma 5.1. Under Assumption (1), given the correlation coe�cient
ρ, the resampling factor ξ and the interpolation kernel h, the measure

KLD(NM (0, Σ0 (σε , ρ)),NM (0, Σ1 (σε , ρ, ξ ,h)))

is independent of σε .

Proof. See Appendix A. �

It is worth recalling here that we are not considering quantization

e�ects and this result shows that, in this se�ing, the variance of the

original samples turns out to act as a scaling factor (i.e., it does not

add nor remove information). However, this may not hold when

the signal is discretized before and a�er the resampling operation,

thus leaving as future work the task of assessing the sensitivity of

such result when a more or less slight quantization is applied.

In our current study, we can then �x the parameter σε = 1 and

analyze the variation of ρ, ξ andh, as reported in Fig. 5. We consider

ρ = 0 (the signal is white Gaussian noise), ρ = 0.5 and ρ = 0.95,

which is adopted in [23] to represent natural images. Di�erent

sequences ξa
1:10

(corresponding to locations along the horizontal

axis) are identi�ed by di�erent markers and colors.

�is shows that in each plot the KLD follows a general trend, al-

though there are oscillations due to the speci�c interaction between

the parameters. In each case, there is a peak in the interval [0.95, 1]

followed by a sharp decrease towards 0 when the resampling factor

approaches 1. Moreover, we notice that the linear interpolation

kernel generally yields a higher KLD, while it decreases when

switching to cubic and Lanczos interpolation.

However, the most interesting observation is the di�erent be-

havior of the KLD when the resampling factor approaches 0 among

di�erent rows. In fact, it appears that the correlation coe�cient

ρ substantially in�uences the KLD value when downsampling is

strong.

In order to examine this phenomenon, we focus on the sequence

ξ 0

1:10
= {1/q,q = 2, . . . 10} (blue squares in the plots). In fact, we see

that for ρ = 0 the KLD is always zero, while the le� tail signi�cantly

increases as ρ increases.

In this case, we can explain analytically the relationship between

the entries of Σ0 and Σ1, according to the following Lemma:

Lemma 5.2. Under Assumption (1), for every downsampling factor
1/q,q ∈ N0, and an interpolation kernel such that h(0) = 1 and
h(k ) = 0 for every k ∈ Z, the following expression holds:

Σ1[k,k + t] = Σ0[k,k + t] · ρ |t |(q−1) , t ∈ Z. (25)

Proof. See Appendix B. �

Note that the linear and cubic interpolation kernels analytically

ful�ll the requirement of the lemma, while the Lanczos kernel yields

very small values at integers di�erent than 0.

Given equation (13), we have that (25) does not depend on k
but only on the lag t , so that the entries of Σ1 are constant along

each diagonal, just like it happens Σ0. �us, we can evaluate the
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Figure 6: �e quantity (6) is plotted as a function of q and t
for di�erent values of ρ.

absolute di�erence between the covariance matrix entries at the

t-th diagonal under the two hypotheses as a function of q, which is

given by

D (q, t ) =
ρ |t |

1 − ρ2
(1 − ρ |t |(q−1) ) (26)

In Fig. 6, we report the values of D when varying q and and t ,
so that each vertical bar represents the �rst row of the covariance

matrix for a �xed q, which contains all the values appearing in Σ1.

We observe that when ρ = 0, the whole covariance matrix is

unaltered, thus explaining the zero values of the KLD in the �rst

row of Fig. 5. If ρ , 0, no changes are clearly introduced when

q = 1 and the same happens in any case when t = 0: the variance

of samples is not modi�ed.

It is worth considering that such kind of downsampling factors

do not introduce observable periodicities in the covariance matrix,

as the downsampled signal has pure cyclostationarity with period

1 (in fact, covariance matrix values are constant along diagonals).

�is situation has been already pointed out in the literature [18]

and represents a major obstacle for existing forensic detectors based

on the periodicity analysis, which (therefore) rarely address the

detection of strong downsampling (ξ < 1/2).

However, our analysis shows that forensically useful information

is still present in the signal. In this case, observe the decay of the

autocovariance when t increases: expression (25) indicates that

a�er downsampling with factor 1/q the autocovariance decays as

the power of ρq instead of ρ.

5.2 Prediction error distribution
According to the formulation in Section 3, a similar analysis can be

performed when the prediction error with coe�cients β−T , . . . , βT
is employed (i.e., when the signal is pre�ltered), so to evaluate

whether this operation increases the distinguishability of the null

and alternative hypothesis. In this case, a transformation by means

7
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Figure 7: KLD values are reported as a function of ξ for di�erent values of ρ (row-wise) and di�erent interpolation kernels
(column-wise). Di�erent colors indicate di�erent pre�lters, according to the legend. �e KLD in each case refers to the distri-
butions of aM-variate vector withM = 30 under the two hypotheses.

Case Fx = x (Section 5.1)

M︸                  ︷︷                  ︸
Fx=x

Case Fx = Bxex
(Section 5.2)

M + 2T︸                                   ︷︷                                   ︸
xex

M︸                  ︷︷                  ︸
Fx=Bxex

Figure 8: �e �gure shows the signal samples considered in
the hypothesis tests of Sections 5.1 and 5.2, respectively. It
can be noted that Fx in both cases refers to the sameM loca-
tions in the signal, although 2T additional samples are used
in the second case.

of the matrix B de�ned as in (9) is applied. However, it is to be

noted that applying B to x would not increase the hypothesis dis-

tinguishability with respect to the test considered in 5.1. �is is

due to the result recalled in [3, Lemma 1], stating that deterministic

processing of data cannot increase the KLD of between two distri-

butions. �us, we de�ne xex
as an extended version of x containing

in the �rst (last) positions the T samples of the signal under inves-

tigation lying before (a�er) x. �en, we consider Fx = Bxex
, so that

the obtained vector Fx has length M and contains the values of the

prediction error at the same locations of the values of x, although

more information is used with respect to the test in Section 5.1 (i.e.,

the additional samples). An illustration is given in Fig. 8.

By replicating the reasoning of Section 4, Fx is also a multivari-

ate normal random vector and the covariance matrices under the

two hypotheses are computed as in (22) with an additional pre-

multiplication by B and post-multiplication by BT . �us, the KLD

of P0 (Fx) and P1 (Fx) can be computed in the same way as in (5).

In Fig. 7 we report the KLD values when varying ξ and h as

in Section 5.1. We considered three di�erent kind of pre�lters

represented with di�erent colors in the plots: one related to the

discrete second order derivative (β−1 = −0.5, β0 = 1, β1 = −0.5)

and two corresponding to discrete �rst order derivative, namely

8



the backward �nite di�erence (β−1 = −1, β0 = 1, β1 = 0) and the

forward �nite di�erence (β−1 = 0, β1 = 1, β1 = −1).

We can observe that the values resemble the ones of Fig. 5, al-

though a direct comparison would not be fair due to the di�erent

amount of information used (cf. Fig. 8). Moreover, the di�erent

pre�lters do not lead to signi�cantly di�erent results, except for

the case of the second order derivative �lter with strong down-

sampling. �is is certainly related to the speci�c interaction of the

prediction coe�cients in β and the interpolation coe�cients in C .

An analytical characterization of the results reported in Fig. 7 as

a function of ρ would explain the general trend observed in every

plot and will be subject of future investigation. With this respect,

our current conjecture is that, apart from information introduced by

the additional samples, pre-�ltering cannot substantially increase

hypothesis distinguishability from an information-theoretic per-

spective, while its e�ect strongly depends on the decision method

adopted (e.g., in [23] it proves to be crucial when performing a

frequency analysis).

5.3 Autocovariance estimator distribution
As emphasized before, one of the properties exploited by many

existing techniques is the periodicity of the elements of the covari-

ance matrix Σ of x. Moreover, we have seen in Section 5.1 that the

covariance matrix can play a key role also when no periodicity is

present. �is calls for studying the situation where the entries of Σ
are estimated starting from S realizations of x by means of standard

estimators, like the sample covariance matrix

XTX
S
, X =



xT
1

xT
2

. . .

xTS



. (27)

It is to be noted that the estimation of second-order moments

from the signal samples more or less implicitly happens in the

majority of existing detectors: in [14] it is observed that the p-map

is a simpli�ed model for the error variance, so that every value

of the prediction error is considered as an estimate of its variance

at the speci�c location; in [23], the correlation of an image block

with lag 0 is estimated before performing the frequency analysis;

in [16], the autocovariance function a�er the Radon transform is

estimated; in [11], di�erent image rows are used to estimate the

autocovariance in the horizontal direction.

A simple example is given by the case where the autocovariance

function of the signal is considered as dependent only on the lag t
and Cov{t } is estimated as

1

S

S∑
i=1

sisi+t , (28)

where the si are the samples of the zero-mean signal under investi-

gation. Note that this is the approach adopted in [16] to estimate

the autocovariance function of the Radon transform vectors. By

referring to the notation in formula (27), this is equivalent to con-

sidering S consecutive M-dimensional vectors as observations and

use their values to estimate the entries of Σ, as represented in Fig. 9.

However, this approach is only suited for WSS processes, including

not resampled signals under Assumption 1 or downsampled signals

with factor 1/q, as shown in Section 5.1.

Other practical examples are given by sequential images taken

by a �xed camera (where signal segments at �xed locations and

di�erent frames can be considered as equidistributed) or a single

image (where horizontal signal segments at �xed location and dif-

ferent rows can be considered as equidistributed over homogeneous

regions, as done in [11]).

We consider the case where variances and covariances are jointly

estimated from a number of observations, as summarized in formula

(27). Di�erent observations correspond here to di�erent available

multivariate vectors x1, . . . , xS that are assumed drawn from the

same distribution and, additionally, independent. Under Assump-

tion (1) and according to the analysis in previous sections, the

observations are zero-mean multivariate normal vectors with co-

variance matrix Σ0 and Σ1 in case of null and alternative hypothesis,

respectively. It is known that in this case, the matrix XTX (also

called sca�er matrix) follows a M-variate Wishart distribution with

S degrees of freedom [8] and scale matrix Σ0 or Σ1, according to

the veri�ed hypothesis. So, we can analyze the test

H0: XTX ∼ WM (Σ0 (σε , ρ), S ). (29)

H1: XTX ∼ WM (Σ1 (σε , ρ, ξ ,h), S ).

whereWM (Σ, S ) indicates a M-dimensional Wishart distribution

with S degrees of freedom and scale matrix Σ, with the constraint

that S ≥ M in order for the Wishart distribution to have a density

in the space of M ×M matrices [8]. �e KLD between two Wishart

distributions with the same number of degrees of freedom is given

by [10]

KLD(WM (Σ0, S ),WM (Σ1, S )) = S


tr(Σ−1

0
Σ1) + tr(Σ−1

1
Σ0)

2

−M

.

(30)

It is worth noticing that the KLD increases linearly with the

number of observations. Similarly as in Lemma 5.1, we can prove

that expression (30) does not depend on σε , so we perform in Fig. 10

the same analysis as in Section 5.1. �e trend observed in Fig. 10

further con�rms the considerations made in Section 5.1. It is to be

noted that a direct comparison of the KLD values would again be

unfair, as in this case the whole matrix X is used, which contains a

considerably higher amount of information with respect to x. How-

ever, we can notice that the e�ect observed when the resampling

factor approaches 0 seems to be here even ampli�ed (see the case

ρ = 0.95 and linear interpolation).

M︸                  ︷︷                  ︸
x1︸                  ︷︷                  ︸

x2 . . . ︸                  ︷︷                  ︸
xS

Figure 9: Example of di�erent observations.
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Figure 10: KLD values are reported as a function of ξ for di�erent values of ρ (row-wise) and di�erent interpolation kernels
(column-wise). Di�erent marks and colors indicate the di�erent sequences ξa

1:10
, according to the legend. �e KLD in each

case refers to the distributions of aM ×M matrix withM = 30 under the two hypotheses.

6 CONCLUDING REMARKS
We have studied the statistical distance of downsampled 1D sig-

nals with respect to their non-downsampled counterparts. Under

common assumptions on the original signal statistics, we have ob-

served that all the information about a signal segment statistics is

contained in its covariance matrix. �is allowed us to assess the

in�uence of both signal and resampling parameters on the distin-

guishability between the hypothesis of no downsampling and the

hypothesis of downsampling in terms of KLD. In doing so, we have

studied the distribution of the signal segment itself, of di�erent

pre�ltered versions of it and also of a standard estimator of its

covariance matrix.

We can �rst observe that the use of di�erent interpolation ker-

nels (namely linear, cubic, and Lanczos) does not seem to have a

substantial e�ect on the KLD with respect to di�erent resampling

factors. However, we notice that the KLD values when the Lanc-

zos kernel is used are upper bounded by the ones obtained with

the cubic interpolation, and the same happens for cubic and linear

interpolation, respectively.

When varying the resampling factor ξ ∈ [0, 1], we can identify in

each case a common trend when ξ approaches 1: the KLD increases

approximately until 0.95–0.98, and then sharply drops to 0, as

expected.

However, the most interesting �nding is observed when the

correlation coe�cient ρ among consecutive original samples is

modi�ed. In fact, while the KLD behavior remains stable for ξ

10



approaching 1, the hypothesis distinguishability in case of strong

downsampling signi�cantly increases as ρ increases. With this

respect, the choice of considering sequences of rational numbers

with the same numerator (i.e., introducing the same periodicity in

the resampled signal) proves to be crucial since it allows us to obtain

theoretical results for speci�c sequences, as we did for the factors

ξ = 1/q,q ∈ N. In this case, we have analytically characterized the

transformation of single covariance matrix entries, showing that the

underlying correlation structure in the original signal plays a key

role and introduces statistical distance between a non-downsampled

and a downsampled signal even when no periodicity is introduced.

�is obviously calls for research on new classes of detectors which

exploit these traces in real signals. For the design of practical

approaches, we cannot assume the knowledge of ρ in the original

signal. If and how well it can be approximated is subject to future

investigations. Other issues arise for signals where ρ is spatially

varying.

Also the theoretical analysis leaves room for future extensions

in several directions. As mentioned, a theoretical description of

di�erent pre�ltering e�ects on the hypothesis distinguishability

as well as upsampling in general still represent open questions

and would complement the present analysis. Moreover, future

work will be devoted to the extension of the model to 2D signals,

thus accounting for interpolation kernels and correlation structures

involving both the row and column dimension. In addition, the

current approach deals with continuous signals, while discretized

signals should be considered in order to account for quantization

e�ects, which cannot be avoided in practice and already proved

to be a valuable help in in resampling forensics [20, 24] as well as

many other forensic decision problems [2].
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A PROOF OF LEMMA 5.1
From expression (14) we have that

Σ0 (σε , ρ) = σ
2

ε Φ0, Φ0 =



1

1−ρ2

ρ1

1−ρ2

ρ2

1−ρ2
. . .

ρN−1

1−ρ2

ρ1

1−ρ2

1

1−ρ2

ρ1

1−ρ2
. . .

ρN−2

1−ρ2

...
. . .

. . .
. . .

...

ρN−2

1−ρ2

...
ρ1

1−ρ2

1

1−ρ2

ρ1

1−ρ2

ρN−1

1−ρ2
. . .

ρ2

1−ρ2

ρ1

1−ρ2

1

1−ρ2



,

(31)

so that Σ1 = CΣex

0
CT = σ 2

εCΦ
ex

0
CT = σ 2

ε Φ1, where Φex

0
is de�ned

in the same way as Σex

0
and Φ1 � CΦex

0
CT does not depend on σε .

We can now consider the parts of (24) that depends on σε :

tr(Σ−1

1
Σ0) = tr((σ 2

ε Φ1)
−1σ 2

ε Φ0) = tr

(
1

σ 2

ε
Φ−1

1
σ 2

ε Φ0

)
= tr

(
Φ−1

1
Φ0

)
,

(32)

and

det(Σ1)

det(Σ0)
=

det(σ 2

ε Φ1)

det(σ 2

ε Φ0)
=
σ 2M
ε det(Φ1)

σ 2M
ε det(Φ0)

=
det(Φ1)

det(Φ0)
. (33)

Neither (32) nor (33) depend on σε , but only on ρ, and so does

(24). �

B PROOF OF LEMMA 5.2
We can observe that, under the premises of the lemma, the matrix

C has the form

C =



1 . . . 0 0 0 0 0 . . .

0 . . . 1︸ ︷︷ ︸
q

0 0 0 0 . . .

0 0 0 . . . 1︸ ︷︷ ︸
q

0 0 . . .

0 0 0 0 0 . . . 1︸ ︷︷ ︸
q

. . .

...
...
...
...
...
...
...
. . .



. (34)

�us, every k-th row has only one nonzero element equal to 1 at

the (q(k − 1) + 1)-th column.

Coupled with (22) and (13), it means that every entry of Σ1 is

given by

Σ1[k,k ′] =
N∑
n=1

C[k,n]

N∑
n′=1

C[k ′,n′]Σex

0
[n,n′]

= C[k,q(k − 1) + 1]C[k ′,q(k ′ − 1) + 1]

ρq |k−k
′ |

1 − ρ2

=
1

1 − ρ2
ρ |k−k

′ |q .

By �xing k ′ = k + t , we have expression (25). �
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[23] D. Vàzquez-Padı̀n and F. Pèrez-Gonzàlez. 2011. Pre�lter design for forensic

resampling estimation. In IEEE International Workshop on Information Forensics
and Security (WIFS). 1–6.
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