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Abstract. Cryptocoins based on public distributed ledgers can differ in
their quality due to different subjective values users assign to coins de-
pending on the unique transaction history of each coin. We apply game
theory to study how qualitative differentiation between coins will affect
the behavior of users interested in improving their anonymity through
mixing services. We present two stylized models of mixing with perfect
and imperfect information and analyze them for three distinct quality
propagation policies: poison, haircut, and seniority. In the game of per-
fect information, mixing coins of high quality remains feasible under cer-
tain conditions, while imperfect information eventually leads to a mixing
market where only coins of the lowest quality are mixed.
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1 Introduction

While public distributed ledgers serve as an essential backbone of many cryp-
tocurrencies, they inherently act as a source of differentiation of coins by qual-
ity. Indeed, each individual unspent transaction output has its unique history
recorded with cryptographic integrity protection in the public distributed ledger.
Having the entire history publicly available makes cryptocoins non-fungible, that
means distinguishable from each other in terms of the perceived quality. Coins
generated in the genesis block or passed through credible exchanges might be
more attractive to someone over coins whose transaction history contains pat-
terns suggesting dubious activities in the past [17].

The traceability offered by public distributed ledgers has called the anonymity
of financial transactions into question. For example, the most popular cryptocur-
rency, Bitcoin, was initially spoken of as a truly anonymous payment method.
However, many studies [4,16,23,24] have shown that the blockchain infringes
user privacy. In efforts to impede simple blockchain analyses, privacy-concerned
users can cooperate with each other and mix their payments in a single transac-
tion instead of sending multiple individual transactions. Many cryptocurrency
protocols support such collective transactions, to which we refer here as mixing
transactions. In general, mixing can be thought of as a privacy-enhancing overlay
[15], which tangles the transaction’s inner flows between incoming and outgoing
funds. This makes money flows more difficult to trace [32].
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If the history of transactions matters to users, mixing coins of good and bad
quality in one single transaction bears the risk that good coins are exchanged
for worse ones. A simple example of this would be a multi-input transaction,
some inputs of which can be traced back to darknet markets or ransomware
payments. Such a transaction may come under scrutiny of law enforcement as a
payment possibly made by or to a criminal. Moreover, in the name of prevent-
ing financial crime, regulators may enforce transaction blacklisting. Although
blacklisting is not explicitly implemented today, its ideas are already present in
the Bitcoin system in various forms. For example, some wallet providers and
exchanges allegedly denied or delayed transactions which tried to spend stolen
funds or could be linked to darknet markets [5,12]. Blacklists are one possible
source of qualitative differentiation.

Whenever coin quality matters, each downstream transaction must not lead
to the loss of information about the quality of newly generated outputs. Rather,
we must assume that some sort of a quality propagation policy is in place to allow
for situations when coins of different quality are combined in one transaction. If
qualitative differentiation between coins becomes common practice and a specific
policy takes effect, users will always have to account for the risk of receiving coins
of low quality. As this risk is especially amplified in the context of mixing, it is of
particular interest to analyze how participants of mixing services will behave in
these circumstances. Will they be willing to engage in mixing and, if yes, under
what conditions? Will the market for mixing services persist after all?

Contributions. We apply game theory to study this scenario and formalize
the game of mixing coins of different quality. Besides addressing the quality
propagation effect, the model captures two main factors behind users’ intentions
to mix: privacy enhancement and financial compensation. While distinct prop-
agation policies have been proposed in the literature, they are of limited value
to both practice and research if their system-wide implications are not theoreti-
cally analyzed. To this end, we make several relevant contributions. Specifically,
we devise a variant of the game for each of the policies and solve it under two
regimes of perfect and imperfect information. This allows us to discuss the policy
implications from the design perspective of distributed ledger protocols and si-
multaneously provide theoretical support for arguments brought into the debate
around fungibility and privacy.

The remainder of the paper is organized as follows. Using Bitcoin as a promi-
nent example, we begin with preliminaries on cryptocurrencies, mixing transac-
tions and propagation policies in Section 2. Then, in Sections 3 and 4, we present
and theoretically analyze the game for each introduced policy. The practical im-
plications are discussed in Section 5. We briefly review related work in Section
6 and conclude with limitations and future research in Section 7.

2 Preliminaries

We use Bitcoin as running example, noting that the problem definition and
solution approaches generalize to most cryptocurrencies known to date [7].
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Bitcoin is a decentralized system that maintains a public, append-only ledger
of confirmed transactions (known as the “blockchain”) through collective efforts
of a peer-to-peer network running a probabilistic consensus protocol [20]. Bitcoin
addresses generated from public keys serve as account identifiers, whereas the
knowledge of private keys indicates ownership of accounts and control over the
coins in them. As no real-world identity is required to generate key pairs, each
user may autonomously create an arbitrary number of Bitcoin addresses.

The blockchain stores a log of all valid transactions ever made in Bitcoin.
A transaction is a digital record that consists of a list of inputs – references to
existing addresses in the blockchain with a positive balance, and a list of outputs
– addresses to which specified numbers of bitcoins are sent. Bitcoin is designed
in a way that the total value of the inputs has to be spent in the outputs of a
transaction. Otherwise, the difference is considered as a fee and paid to special
nodes in the network (miners), who validate transactions and ensure a consistent
and manipulation-resistant state of the blockchain.

2.1 Coin Mixing

A common thread of criticism of Bitcoin is the lack of full anonymity of pay-
ments [16]. With blockchain exploration tools at hand, one can browse through
the complete transaction history and trace money flows back to their origins. Fur-
thermore, experimental analyses of the limits of anonymity in Bitcoin [4,16,23,24]
show that some users can be deanoynmized by applying appropriate heuristic
techniques and consulting external information. Once a real name behind an ad-
dress is found, the user’s privacy might be jeopardized, as the blockchain allows
a passive observer to look up other linked transactions [6]. Besides avoiding the
re-use of public addresses, individuals seeking for greater anonymity may use
available mixing services.

The concept of mixing coins of different users is fairly straightforward. Here, it
refers to combining inputs and outputs of multiple parties in a single transaction.
The current implementation of the protocol enables to build such collaborative
transactions as it requires separate signatures for each public key specified in
the transaction’s inputs. With a sufficient number of participants engaged in
a mixing transaction, it becomes harder to trace money flows by finding the
connections between sending and receiving addresses. By extension, it gets even
more difficult if mixing is done repeatedly. Nevertheless, individual values of in-
puts and outputs may still reveal enough information for a successful untangling
of the transaction’s inner flows [32].

The idea of and practical need for mixing has given rise to the emergence
of special services and marketplaces designed to match supply and demand of
anonymous transactions [17]. Here, we limit our focus on CoinJoin, as one spe-
cific example present in the Bitcoin system. In its simplest case, a CoinJoin
transaction aggregates two or more inputs from two different users and contains
at least two outputs of equal value. So, a blockchain observer cannot directly
link these two outputs to the sending Bitcoin addresses. The larger the number
of participants, the greater the anonymity of a CoinJoin transaction. However,
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users interested in anonymity suffer from the necessity of finding other part-
ners who are willing to participate in mixing at the same time. This limitation
explains the presence of special mixing services and platforms [17], where indi-
viduals supply their bitcoins for use in mixing transactions in exchange for a
small mixing fee.

2.2 Sources of Qualitative Differentiation

In addition to applications like colored coins [25] or possible cross-chain mixing
in the future, black- and whitelisting are potential sources of qualitative differen-
tiation between coins. For the sake of intuitive illustration, we nonjudgementally
refer to blacklisting in this paper in order to model coins of different quality.

Although not fully implemented today, potential blacklisting of criminal
transactions as well as the issue of fungibility are subjects of intense interest
and ongoing debates. Since each output has an accessible and cryptographically
verifiable history of ownership, Bitcoin is not fungible. Also the market partici-
pants’ convention to treat bitcoins as if they were fungible has been repeatedly
called into question. Statements published on Bitcointalk.org and relevant sub-
reddit threads [5,29] illustrate this point:

“Looking to buy an old 50 BTC block. Where to buy? I’ll pay in bitcoin.
No FIAT/Alt coin. Willing to pay premium.”

blockCollector, Nov 11, 2015
“BitPay is blacklisting certain bitcoins & rejecting customers. I’m certain
others are doing it too. Fungibility is most pressing issue IMO.”

TraderSteve, Sep 25, 2015

These examples support the conjecture underlying this work that coins differ
in their quality. Transaction blacklisting followed by the devaluation of marked
bitcoins has been suggested as a conceivable means of fighting financial crime
[18,19]. In practice, this may be realized by enforcing the centralized actors (e. g.,
exchange services or wallet providers) or, alternatively, miners to consult black-
lists and disregard those transactions that try to reclaim funds from criminal
proceeds. The notorious story of a recently exploited vulnerability in the De-
centralized Autonomous Organization (DAO), an Ethereum-based program, has
clearly demonstrated the doubtfulness and disagreement in the community re-
garding how issues related to illicit use should be resolved and who would bear
the burden of doing it [27].

Several obstacles impede the effectiveness of blacklisting as a policy tool.
First, perpetrators can disguise the origins of money by resending their dirty
coins through as many fake addresses as they need. Therefore, the application of
blacklisting has to propagate through the entire transaction graph, rooted at the
offending transaction. Second, as law enforcement takes time, ordinary users will
inevitably face a risk of receiving allegedly clean coins that might be blacklisted
by authorities later [19]. These facts call for a detailed elaboration of blacklisting
propagation mechanisms and their effects on the ultimate quality of coins. This
is especially crucial in case of multi-input transactions comprising of both high-
and low-quality inputs.
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2.3 Quality Propagation Policies

We consider three basic propagation techniques, termed as the poison, haircut
and seniority policies [19], and assume that there is a consensus on one specific
policy, implemented in the client software. To demonstrate the application of a
propagation mechanism in each case, let us use an example of the transaction
graph depicted in Figure 1. The transaction of interest Z references outputs of
the two preceding transactions X and Y . Suppose, the transaction X is discov-
ered to be a ransom payment and, consequently, all of its outputs are added to
the blacklist. Under the poison policy, every output of the transaction that
has at least one blacklisted predecessor is invalidated completely. Consequently,
all outputs of Z will be blacklisted.

Transaction X

In1

In2

Out1

Out2

3 BTC

2 BTC

4 BTC

Transaction Y

Out1In1
3 BTC

Transaction Z

In1

In2

Out1

Out2

1

3

2 BTC

2 BTC

Fig. 1: Example of the transaction subgraph in Bitcoin. Gray areas indicate that
both outputs of the transaction X are blacklisted.

The less drastic haircut policy dictates to devalue all outputs of a transac-
tion proportionally to the total amount of blacklisted coins in its inputs. Thus,
each output will contain an identical fraction of blacklisted coins, which is calcu-
lated as the fraction of the collective blacklisted value in the total transaction’s
input. Referring back to our example, both outputs of Z will thus have a par-
tial devaluation of their nominal worth (25 percent, to be precise). As Bitcoin
is divisible down to the smallest unit of one satoshi (worth 10−8 BTC), the
haircut policy requires a special rule regulating blacklisting of minimum values
and preventing money laundering through multiple tiny outputs. Such rule may
dictate, for example, that the blacklisted value is rounded up to the full satoshi.
(We ignore this quantization effect in the rest of this paper.)

Under the seniority policy, the output order and amounts determine how
incoming blacklisted coins will be redistributed. Let us assume for simplicity that
blacklisted coins are propagated in the order of the output list in a transaction
(i. e., from top to bottom). Since the transaction X has one blacklisted input
of the value 1 BTC, its first output of nominal value 2 BTC will be devalued
by half. Similarly to the haircut policy and in contrast to the poison policy, the
seniority regime does not change the total sum of blacklisted coins.
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3 Model

Of particular interest for our study is to examine for each policy how users be-
have if coins of different qualities can hypothetically be mixed in one transaction.
For that, we present two game-theoretic models of mixing, one with perfect and
complete information and one with imperfect and complete information. A game
of perfect information assumes that each player is aware of the prior actions
chosen by other players, whereas imperfect information implies uncertainty re-
garding at least one move of another player. Complete information means that
all players know all players’ action sets and payoff functions [?, p. 136].

Two rational players A and B consider to transfer coins in a joint mixing
transaction. Player A is a privacy seeker who initiates a mixing transaction,
and B is a privacy provider who helps to establish a (minimum) anonymity set
by participating in this transaction. Each player is endowed with an unlimited
number of coins (i. e., transaction outputs) of different quality q ∈ [0, 1]. Coins
with q = 1 are not on the blacklist and referred to as “good” or “clean” (e. g.,
coins passed through trusted exchanges), whereas coins with q 6= 1 are blacklisted
or “bad” coins that can be linked to criminal activities. The term (1 − q) can
be alternatively interpreted as a fraction of the coin that has been devalued
according to the applied policy.

The privacy seeker A desires more anonymity through mixing and pays player
B the mixing fee c� 1 as a reward for joining a transaction. We assume that the
fee for anonymity is payed out within the mixing transaction itself. Besides this
financial compensation, player B also benefits from anonymity, as the mixing
transaction anonymizes the identities of all participants. Player A selects (1 + c)
coins of quality qa, while player B chooses one coin of quality qb. So, the move of
player i is the choice of qi. In addition, the players have the outside strategy not
to engage in mixing at all, as both need to sign a mixing transaction before it
can be broadcasted to the network. Note that we explicitly disregard transaction
fees payed to miners and assume that each player transfers funds to (possibly
multiple) destination addresses under her control. Thus, players A and B own
afterwards funds of 1 and (1 + c) nominal value, respectively. The quality of
these funds may however change once a specific quality propagation policy takes
effect. We use the notation q′a and q′b to denote the respective post-transaction
quality factors.

In the presence of qualitative differentiation and everything else being con-
stant, a rational player always tries to maximize her own utility, which corre-
sponds in our setting to the maximization of the value of coins at disposal. The
utility of each player is therefore measured in units of good coins and expressed
by three relevant components: 1) the subjective value of anonymity the player
attributes to a mixing transaction; 2) the post-transaction value of the funds
held by the player; 3) the compensation fee paid by the privacy seeker A to the
privacy provider B. We first define each component and later specify the payoff
function of each player formally.

In reality, the perceived anonymity of an individual mixing transaction de-
pends on multiple aspects (e. g., the number of participants, the number of inputs
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and outputs and their exact quantities, repeated mixing etc.). Since transaction
parties value anonymity differently and it is not trivial to quantify it, we express
the benefit of (somewhat more) anonymity by a relative unit gain equal to one
good coin. Suppose, without loss of generality,3 that player A gains one unit of
anonymity, whereas player B gains some level τb ∈ [0, 1]. τb = 1 indicates that
both players value anonymity of a mixing transaction equally; τb = 0.5 means
that player B values it half as much as player A; τb = 0 means that player
B receives no benefit in terms of improved anonymity from mixing. Note that
the gain in anonymity is discounted by the post-transaction qualities q′a and q′b.
There is less value in having bad coins anonymized. Moreover, this avoids corner
cases where players have incentives to mix at the risk of receiving bad coins.

The post-transaction qualities endogenously follow from the choice variables
qa and qb and the applied quality propagation policy. Unlike the seniority policy,
the poison and haircut policies allow us to formally define q′a and q′b as a function
of the pre-transaction quality factors qa and qb. Under the poison policy, all coins
are either good (qi = 1) or bad (qi = 0). Table 1 specifies the values of q′a and q′b
for all possible combinations of qa and qb. Under the haircut policy, the levels of
q′a and q′b are equal and, besides the choice variables qa and qb, depend on the
parameter c. Since the fee (of quality qa) is transferred in the mixing transaction,
it influences the total transaction amount as well as the total level of blacklisted
coins in the inputs.

Table 1: Post-transaction quality factors

Policy qa qb q′
a q′

b

Poison

1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0

Haircut qa ∈ [0, 1] qb ∈ [0, 1] qa·(1+c)+qb
2+c

qa·(1+c)+qb
2+c

With regard to the last component of the payoff function, the mixing fee has
to be discounted by qa in the payoff of player A and by q′b in the payoff of player
B in order to measure its value relatively to one clean coin. Thus, the players’
payoffs πi after successful mixing is given as follows:

πA = 1 · q′a + 1 · q′a − c · qa = 2 · q′a − c · qa; (1)

πB = τb · q′b + 1 · q′b + c · q′b = (τb + 1 + c) · q′b. (2)

3 Otherwise, switch players A and B.
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If one of the players disagrees to mix and chooses the outside option, the payoffs
are as follows:

πA⊥ = 1 · qa + c · qa = (1 + c) · qa; (3)

πB⊥ = 1 · qb. (4)

4 Results

We first present the game of perfect and complete information for tractability
and as a benchmark, before we consider the game of imperfect (and complete)
information, in which the players choose coin qualities qi simultaneously.

4.1 Perfect Information: Sequential Game

The model of perfect information assumes qa and qb to be common knowledge.
This means that blacklists have to be public and always up-to-date, e. g., law
enforcement agencies immediately discover and blacklist offending transactions.
With public blacklists, each player can check the quality of the other player’s
coin before signing and broadcasting a mixing transaction to the network.

Figure 2 shows an extensive form of the sequential game by taking the poison
policy as an example. The presented sequence of moves can be extended to the
other two regimes, too, by considering a larger set of actions available to both
players. Player A initiates the game by committing to the quality of her inputs qa
and the fee level c. Being informed about that choice, player B decides whether
to mix with A or not. If B prefers to dismiss, the game is over. Otherwise,
player B chooses the coin of a particular quality qb and notifies A about it.
Player A learns about the choice of B and makes the final move of the game.
Reciprocally, if A rejects to mix with B, both players exit with the payoffs defined
in Equations (3) and (4). Otherwise, players form a mixing transaction and get
the payoffs as prescribed by (1) and (2). Under the seniority policy, players may
additionally negotiate the order and amounts of transaction outputs until they
reach a consensus or someone rejects to partner with.

Poison policy. We apply a backward induction procedure in order to analyze
the game and find subgame perfect Nash equilibria. As the game is of perfect
information, there are seven subgames in total, labeled Γ1 through Γ7 in Figure 2.
Under backward induction, the subgames Γ4–Γ7 are solved first. In subgame Γ4,
player A agrees to mix the clean coin if c ≤ 0.5 and exits otherwise. In subgame
Γ5, player A always exits due to the negative propagation of blacklisting. In
subgames Γ6 and Γ7, player A is indifferent between the two available choices.
Taking the respective equilibrium for each of the subgames Γ4–Γ7 and going
backward in the game tree, we can see that the game has many subgame perfect
Nash equilibria4, all of which contain either the path:

(qa = 1, qb = 1 and mix)

4 Note that the game of perfect information under the poison regime has even more
Nash equilibria. However, these are not subgame perfect.
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Fig. 2: Poison policy: game of perfect information in extensive form.

if c ≤ 0.5; or otherwise the path:

(qa = 1, qb = 1 and exit).

So, both players mix clean coins if c ≤ 0.5, but player A refuses to pay a too
high fee for anonymity.

Haircut policy. The haircut policy implies the presence of coins of any
quality in the range of [0, 1]. Player A signs a mixing transaction if the payoff
after mixing πA is greater or equal than the payoff without mixing πA⊥:

2 · qa · (1 + c) + qb
2 + c

− c · qa ≥ (1 + c) · qa,

qa
qb
≤ 2

2 · c2 + 3 · c
, qb 6= 0, c 6= 0. (5)

Analogously for player B:

(τb + 1 + c) · qa · (1 + c) + qb
2 + c

≥ 1 · qb,

qa
qb
≥ (1− τb)

(1 + c) · (1 + c+ τb)
, qb 6= 0. (6)

Players A and B agree to mix with each other if both inequalities (5) and (6)
hold. Figure 3 shows the corresponding game outcomes over the space defined
by the quality ratio qa/qb and the fee c for three distinct values of τb ∈ {0, 0.5, 1}.
Region S1 depicts all combinations of the model parameters which result in
successful mixing for τb = 0, regions S1 ∪ S2 depict the same for τb = 0.5;
regions S1∪ S2∪ S3 apply to τb = 1. In the corner case qb = 0, mixing happens
only if player A wishes to mix a bad coin, too.
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Fig. 3: Haircut policy: existence of equilibrium solutions in the game of perfect
information as a function of the fee c and the quality ratio qa/qb for three different
values of τb ∈ [0, 0.5, 1].

If player B values transaction anonymity as much as player A, i. e., τb = 1,
B is willing to partner with A regardless of the fee level c or player A’s coin
quality qa. This is due to the fact that even in the worst possible case for player
B (qa = 0, qb = 1, and c = 0), the degradation in the coin quality (q′b = 0.5)
is fully compensated by the gain in anonymity τb · q′b = 0.5. Thus, the space of
successful game outcomes in S1∪S2∪S3 is limited only by inequality (5), which
corresponds to the uppermost line in Figure 3. Since the payoff of B is directly
proportional to the quality factor of her coin, it is in her best interest to offer
the good coin qb = 1 for mixing. Therefore, the Nash equilibria in case τb = 1
correspond to the set of action profiles {(qa, qb) | 0 < qa ≤ 1, qb = 1}. If player
B values anonymity half as much as player A, i. e., τb = 0.5, her best response
is defined by the green line. If A does not offer any fee, B chooses the coin of
quality qb, which is three times higher than qa. If player A wishes to mix with
the coin of higher quality, i. e., qb > 3qa, she has to compensate player B by
offering a strictly positive fee. The exact level of c for a desirable quality ratio
can be derived from inequality (6). If player B does not value the anonymity of
a mixing transaction, i. e., τb = 0, and there is no financial compensation c, she
will supply the coin of the same quality (qa = qb).

In reality, however, the search cost associated with finding another transac-
tion party with exactly the same quality level may be prohibitive. Similarly to
conventional trading and payment markets [9], search frictions can be overcome
by offering compensation to the enabling party with (slightly) better coins. If B
does not have a coin of the required quality and can mix a coin of higher quality
instead, she will agree to participate in the mixing transaction in exchange for a
higher fee. The greater the difference in the quality of the coins of players A and
B, the more A has to pay to B for joining a mixing transaction. This explains
the monotonically decreasing shape of inequality (6) in Figure 3 when τb < 1.



Mixing Coins of Different Quality: A Game-Theoretic Approach 11

Seniority policy. This policy grants users more flexibility in controlling the
effect of blacklisting propagation. Since players know the quality of all inputs,
they can negotiate an internal structure of the mixing transaction until it is de-
signed in such a way that low-quality fractions of inputs of both players appear
at the beginning of the output list. Player A, as the privacy-seeking party, may
also be willing to list some of her outputs first and sacrifice at the expense of
gained anonymity up to half of the clean portion of her coins. Player B, who
is interested in receiving the financial reward, will demand to list her address
for the incoming fee c at the bottom of the output list. These order constraints
may however leak sufficient information for successful matching of the relations
between inputs and outputs of a mixing transaction. A passive observer of the
blockchain may look up available blacklist data and, knowing the exact trans-
acting amounts, may succeed in deanonymizing the mixing transaction.

The seniority policy can be reduced to the haircut policy if the players agree
to split up blacklisted coins equally by randomly alternating the order of their
outputs for the sake of anonymity. However, the players can be better off in
terms of anonymity while maintaining the quality distribution if they adhere to
one constant value for all (blacklisted and clean) transaction outputs. They can
divide their input funds into multiple outputs of the same amount and randomize
the order of their outputs within the upper subset of blacklisted outputs (the
blacklisted bin) and the lower subset of clean outputs (the clean bin). This way,
the attacker is left with a 50:50 % chance of correctly differentiating between the
output of A and the output of B, whereas the players can preserve the original
quality of their funds. The easiest, however impracticable solution would be to
use one satoshi as the size of each output. In order to reduce the number of
outputs by orders of magnitude, the players can express qa and qb as rational
numbers in the standard form and use a reciprocal of the least common divisor
of the denominators as constant value for all outputs.

Let us demonstrate one numerical example with qa = 3/4 and qb = 1/2 (the
mixing fee is disregarded). Following the above logic, each player splits up her
coin into four different outputs of the nominal value 0.25. The blacklisted bin
will consist of one output of player A and two outputs of player B. The clean
bin contains three outputs of player A and two outputs of player B. The order
of the outputs within each bin must be random in order to get anonymity. As
a result, the post-transaction quality factors q′a and q′b do not change and the
players still enjoy transaction anonymity. Figure 4 in Appendix A illustrates this
example (along with two other specific cases).

4.2 Imperfect Information: Simultaneous-Move Game

Games of imperfect information model situations in which players do not know
the actions of each other. If blacklisting propagation is enforced, users always
risk that a confirmed transaction gets blacklisted later. Thus, the players cannot
know for sure the qualities of all inputs when they sign a transaction. We capture
this more realistic case of mixing in a simultaneous-move game.
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Poison policy. Since all circulated coins are either good (qi = 1) or bad
(qi = 0), players have only two possible strategies, which enables us to represent
the model in normal form (see Table 2). The resulting payoffs are calculated by
substituting the pre- and post-transaction quality factors (given in Table 1) in
the payoff functions (1) and (2).

Table 2: Poison policy: game of imperfect information in normal form

Player B
qb = 1 qb = 0

Player A
qa = 1 2− c, τb+1+c −c, 0

qa = 0 0, 0 0, 0

The presented model has two pure-strategy Nash equilibria (qa = 1, qb = 1)
and (qa = 0, qb = 0). Note that the latter Nash equilibrium is weak, as player
B gets the same payoff by changing her strategy to qb = 1. Although the action
profile (qa = 0, qb = 0) is a Nash equilibrium, it does not correspond to the social
optimum of the game: the sum of the payoffs of both players reaches its maximum
when (qa = 1, qb = 1). Similarly to Akerlof’s classic market for lemons [3], the
poison policy leads to a market failure because of adverse selection. Without
knowing the true quality of coins, nobody is willing to mix good coins at the
risk of encountering bad coins at least in one input of the mixing transaction.

Haircut policy. Over time, the haircut policy results in the circulation of
coins of varying qualities. In the absence of an ability to perfectly differentiate
coins by quality, users of mixing services will make decisions based on their
expectations about the average quality of all coins observed in the mixing market.
Substituting qa and qb with the expected average quality q in inequalities (5)
and (6), respectively, the necessary conditions for players A and B to participate
in the mixing transaction are as follows:

qa ≤
2 · q

2 · c2 + 3 · c
, c 6= 0; (7)

qb ≤
(τb + 1 + c)(1 + c)

1− τb
· q, τb 6= 1. (8)

If player B values anonymity highly (τb = 1), the mixing transaction happens
regardless of the expected average quality and the fee level. The more interesting
scenario is, however, when player B is solely motivated by the financial reward
(τb = 0). In this case, inequality (8) takes the form qb ≤ (1 + c)2 · q. If player A
does not pay a fee, player B has no incentive to supply a coin of quality better
than the average quality q. Otherwise, the fee incentivizes the privacy provider
B to offer the coin of marginally higher quality.

It is reasonable to expect that criminals, who know with certainty which
of their funds originate from illicit transactions, may engage in mixing for the
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purpose of money laundering. They have an incentive to supply coins of the
worst quality in the hope of getting better ones. As other players can anticipate
this behavior, the expected quality factor declines. This further drives owners of
better coins out of the market and fuels the race to the bottom of q, eventually
leading to the presence of only bad coins in the mixing market. Consequently,
there will be no equilibrium outcome with a strictly positive payoff for both
players, and, given the absence of credible signaling mechanisms, the market for
mixing coins of (marginally) good quality will not exist.

Seniority policy. Given the uncertainty regarding qi, each player will prefer
her addresses to be included at the bottom of the output list. Since the seniority
policy can be reduced to the haircut regime, the above reasoning and solution
can be applied here, too. Facing the risk of getting coins of worse quality, the
players will prefer to mix rather bad coins than good ones.

It might seem at first glance that the seniority police allows for a modifi-
cation of the model to a signaling game, because the output order can convey
information and it is linked to payoff. In general, signaling games model strategic
settings of incomplete information in which players can observe the actions of
their opponents (signals) to make inferences about hidden information [28]. A
fundamental principle is that signals must be costly to produce, or have costly
consequences. This is what differentiates signals from “cheap talk” and guaran-
tees their reliability. To enable mixing in more situations, players must be able to
signal that they are committed to supply coins of high quality. A corresponding
output order must be more costly to sign for players with bad coins than for
players with good coins. However, as owners of bad coins have, in the strong
sense, nothing to lose, the only possible signal is that of supplying low quality
coins, which unfortunately does not lead to more mixing equilibria.

5 Discussion

This work is an attempt to conceptualize a formal model of the interplay of users
in the presence of qualitative differentiation between cryptocoins. Although we
motivate the game by taking the illustrative example of mixing services and
blacklisting, the model (of imperfect information) can be generalized to a more
common case where an individual user needs to decide whether to combine own
coins of potentially different qualities in one multi-input transaction.

The regime of perfect information suggests a sequential game. It is applicable
if blacklists are timely and public. Under these assumptions, mixing services
persist. The poison policy dictates users to mix clean coins (if at all), while the
haircut and seniority policies provides certain conditions under which users are
also willing to mix coins of varying qualities. Moreover, the seniority policy can
(approximately) be reduced to the haircut policy.

The regime of imperfect information suggests a simultaneous-move game. It
leads to the failure of the market for mixing of (marginally) good coins under
the poison policy, and our preliminary results let us conjecture that the outcome
applies to the haircut and seniority policies as well. (We plan to refine the analysis
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in a revised version of this work.) With uncertainty about a coin’s quality and
in the presence of criminals interested in using mixers for money laundering,
owners of good coins have no incentive to seek anonymity at the risk of mixing
with bad coins. In this regard, blacklisting can be viewed as an effective economic
mechanism to make mixers less attractive or even to dry them out.

6 Related Work

Work on blacklisting coins is related to blacklisting content (or content providers),
and therefore to Internet censorship. And it connects to anonymity online. Both
are contentious topics; the former more than the latter.

Governments, Internet intermediaries, and organizational network adminis-
trators use many kinds of filtering techniques to intentionally limit or block
access to online content, resources, or services [1]. Among them, blacklists of
malware-infected or phishing sites are perhaps the best known and socially most
accepted example. Although many empirical studies exist on the effectiveness,
coverage, and sharing of phishing blacklists [26,30,31], there is a limited num-
ber of works examining blacklisting from a formal viewpoint. Edwards et al.
[11] present a simple Markov model to study how malware infections might be
contained through blacklisting, while Hofmeyr et al. [14] model potential pol-
icy interventions for controlling malware. They analyze the trade-off between
prevented harm and collateral damage caused by blocking legitimate traffic.

The notion of blacklisting has been put forward in the context of anony-
mous communication systems, such as Tor, JAP, or Mixminion, too. In [13],
the authors formally define anonymous blacklisting systems and specify their
security and privacy features. Such systems should allow users to authenticate
anonymously with a service provider, while enabling the service provider to re-
voke access from abusive users without knowing their identities. Decentralized
anonymity infrastructures (namely, mix-nets [10]) are also the focus of the paper
by Acquisti et al. [2]. Since anonymity can be obtained only within an anonymity
set [22], the authors explore with a game-theoretic approach the economic in-
centives of users to offer and use anonymity services.

In the growing literature on cryptocurrencies, the most closely related works
can be classified into those that concern the implications of blacklisting and
transaction risk scoring [7,19], and those that conduct various kinds of blockchain
analyses in order to examine the (lack of) anonymity in the Bitcoin network
[4,16,23,24]. Our paper draws on the ideas initially set out in [19], which dis-
cussed the potential use of blacklisting in Bitcoin and introduced the blacklisting
propagation policies. It is also inspired by works on the design [8] and use of cen-
tralized mixing services, as well as efforts to detect and break mixing schemes. In
[32], the concept of uncovering value flows within mixing transactions through
subset matching is formalized by means of the graph theory. The authors roughly
estimate that mixing transactions constitute around 2.5 % of all bitcoin transac-
tions, while the authors in [17] report that, on average, 41 transactions per day
are CoinJoin transactions.
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7 Concluding Remarks

This paper contributes to the ongoing debate concerning the implications of
public ledgers on the fungibility of decentralized currencies. It proposes a game-
theoretic model of mixing coins of different quality under the regimes of perfect
and imperfect information and analyzes three variants of it, one for each of
three propagation policies. It finds the optimal strategies of players in the game
of perfect information, and confirms that a Nash equilibrium in case of imper-
fect information is to mix bad coins only. Although the current operation of
distributed ledgers is closer to the regime of imperfect information, we can still
observe the existence of mixers. This is despite a surge of startups specializing
in blockchain intelligence, allegedly to supply critical intermediaries, such as ex-
changes, with private blacklists. We conjecture that this discrepancy between
theory and practice is due to several reasons, chiefly limited scope, lack of en-
forcement, or lack of reliability of existing blacklist. Alternative explanations
include very high valuations of anonymity by some users, or simply nativity
paired with luck of escaping negative experience.

There are several potential avenues for more rigorous and general models
of mixing. First, the measurement of anonymity needs to be refined by taking
other relevant transaction features into account. Second, the model needs to
generalize to multiple players who choose inputs of arbitrary nominal value, but
are constrained in terms of quality. Third, future research should elaborate more
on market mechanisms for the survival of mixing services, e. g., by designing
possible sanctions for the use of bad coins. The model can also be advanced by
taking miner fees and the size of transactions into account. Finally, future work
could examine whether it is possible to enforce side payments of the mixing fee
without compromising the anonymity of any of the participants, and how this
changes the game and its solutions.
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A Seniority Policy
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Fig. 4: Seniority policy: examples of mixing transactions in the perfect infor-
mation regime: (a) shows the case when both coins are either good or bad (2
outputs); (b) – when both coins are of the same quality q ∈ (0, 1) (4 outputs);
(c) – when coins are of different quality (the number of outputs equals two times
the least common divisor of the denominators of qa and qb expressed as rational
numbers). The mixing fee is disregarded in these examples (c = 0).
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