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ABSTRACT
Analytical estimators of the steganographic change rate in images,
such as WS steganalysis, often operate on the noise residual. The
residual can be obtained by estimating the cover content with pixel
predictors and subtracting it from the image under analysis. In
recent years, we have witnessed the success of new deep learning-
based denoisers, such as U-Net, in various fields of image processing.
In this study, we revisit WS steganalysis using a U-Net variant as
a drop-in replacement for the linear filters originally proposed
for cover prediction. A novel property of this U-Net variant is its
hand-crafted loss function, which ensures that when predicting
from stego images, the prediction errors are uncorrelated with the
stego noise, an assumption required by WS steganalysis. Improving
especially in the textured regions, the proposed predictor produces
accurate and consistent change rate estimates. When used as a
detector, our model significantly reduces false positives and thus
potentially sets a new baseline for LSB replacement steganalysis.
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1 INTRODUCTION
Steganography is the art and science of hiding secret messages
inside innocently looking cover objects. A common approach to
steganographic embedding is tomodify an existing cover, e.g., pixels
of a digital image, such that an adversary, the steganalyst, cannot
distinguish between the cover and stego objects. Least significant bit
replacement (LSBR), known since the early 1990s, is an embedding
scheme replacing the least significant bit (LSB) of pixels with a
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message bit [20, 48]. Many steganographic tools available on the
internet still use LSBR [8].

The steganalysis literature has introduced a plethora of detection
methods targeted against LSBR, such as the 𝜒2-test [48], Regular–
Singular (RS) analysis [22], Sample Pair Analysis (SPA) [18], Weight-
ed Stegoimage (WS) [21], or Triples analysis [28]. Subsequent ad-
vances in steganography [19, 39] have taken steganalysis from
analytical detectors toward machine learning with handcrafted fea-
ture vectors [23, 26, 34, 44], and later to deep neural networks [2, 6,
10, 11, 51]. Analytical detectors and feature vectors often operate
on a noise residual, and thus rely on accurate content removal,
typically involving a pixel predictor, such as denoisers, filter banks,
single-pixel inpainting models, etc. [21, 26, 44].

In the related field of image forensics, deep learning-based denois-
ers were a game changer, e.g., for camera identification [16, 33, 52].
In synthetic image generation, we see the success of denoisers at
the core of diffusion models [25]. The architecture that particu-
larly stands out is U-Net, used in the image generators DALL-E [3],
or Stable Diffusion [40]. It is natural to ask whether these pixel
predictors can improve steganalysis, similar to the fields above.

Our contributions in this paper are

(1) a systematic comparison of pixel predictors,
(2) the first use of U-Net in steganalysis, and
(3) improved WS steganalysis against LSBR by using a U-Net-

based predictor.

This paper is structured as follows. Section 2 recalls the back-
ground on LSBR steganography, WS steganalysis, and the U-Net
architecture. Section 3 describes the dataset and the models used
for the experiments. Section 4 presents the results for the detector,
and Sec. 5 provides a discussion. Section 6 summarizes the state of
the art in WS steganalysis and learning-based pixel prediction, and
Sec. 7 concludes.

2 BACKGROUND
2.1 Notation
We typeset scalars in a regular font, 𝑥 , vectors in bold, 𝒙 , and
vector elements with index in subscript, 𝑥𝑖 . An image 𝒙 has 𝑁
elements, called pixels in the spatial domain. Its 𝑖th pixel is denoted
𝑥𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }. From a cover image 𝒙 (0) , we can create a stego
image 𝒙 (𝛼) by embedding a payload of length𝑀 and relative length
𝛼 = 𝑀

𝑁
, also called the embedding rate. The difference between the

cover and the stego image, 𝜹 = 𝒙 (𝛼) − 𝒙 (0) , is called the change
vector or stego noise. It has range 𝛿𝑖 ∈ {0,±1} if we embed at most
one bit per pixel. The embedding makes

∑𝑁
𝑖=1 |𝛿𝑖 | = 𝑁𝛽 changes to

the cover, where the change rate 𝛽 can be interpreted as the average
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Table 1: Comparison of embedding rates 𝛼 of LSB replace-
ment, with and without perfect syndrome coding. Perfect
coding allows much longer messages to be embedded with
the same number of changes.

Embedding Efficiency of perfect Efficient 𝛼 assuming
rate syndrome coding perfect syndrome coding

𝛼 𝛼
𝐻−1 (𝛼)

𝛼
2 · 𝛼

𝐻−1 (𝛼)

0.200 6.423 0.642
0.100 7.690 0.384
0.050 8.894 0.222
0.010 11.744 0.059

probability of changing a pixel. The embedding efficiency, defined
as 𝑒 = 𝛼

𝛽
, relates the embedding rate to the change rate.

For content-adaptive steganography, the probabilities of chang-
ing different pixels can vary depending on the cover content. Thus,
the previously scalar change rate becomes a vector 𝜷 , with 𝛽𝑖 being
the probability of changing the 𝑖th pixel. The vector 𝜷 connects to
the scalar 𝛽 , s.t., 𝛽 = 1

𝑁

∑𝑁
𝑖=1 𝛽𝑖 .

The loss functions used for training are based on the mean ab-
solute error MAE(𝑥 ;𝑦) = |𝑦 − 𝑥 | for scalars and MAE(𝒙;𝒚) =
1
𝑁

∑𝑁
𝑖=1 |𝑦𝑖 − 𝑥𝑖 | for vectors. The semicolons in the loss notation

separate data available to the steganalyst from ground truth.

2.2 LSB replacement steganography
LSB replacement is an embedding operation defined as,

𝑥
(𝛼)
𝑖

= 𝑥
(0)
𝑖

+ |𝛿𝑖 | · (−1)𝑥
(0)
𝑖 . (1)

The embedding positions, where the absolute value of the change
vector are one, follow a |𝛿𝑖 | i.i.d.∼ Bernoulli(𝛽𝑖 ) distribution. The
change direction depends on the parity of the cover pixel: LSBR
increments even values and decrements odd values. The property
that the cover pixel determines a single possible change direction
allows for powerful analytical attacks, such as WS [21].

Many older papers do not consider coding and report the results
for the embedding efficiency 𝑒 = 2, i.e., 𝛽 = 𝛼

2 , because there is
a 50% chance that the cover LSB is set to the value needed. More
recent steganography research uses syndrome coding [19], which
assumes that 𝑒 is at its upper bound, 𝑒 ≤ 𝛼

𝐻−1 (𝛼) , where 𝐻
−1 (·) is

the inverse of the binary entropy,𝐻 (𝑝) = −𝑝 log(𝑝)−(1−𝑝) log(1−
𝑝) [47]. Thus, steganography with perfect coding makes fewer
changes than standard LSBR for the same reported embedding
rate. This difference can be especially relevant for quantitative
steganalysis, which tries to estimate the embedding rate instead of
just distinguishing between cover and stego [20]. Table 1 allows
the reader to translate our embedding rates 𝛼 to the embedding
rates in the literature that assumes perfect syndrome coding. For
instance, LSBR at 𝛼 = 0.2 makes the same number of changes as
embedding with perfect coding at 𝛼 = 0.642.

2.3 Adaptive LSBR
The choice of 𝜷 controls the position of changes. Standard LSBR
uses permutative straddling, i.e., constant 𝛽𝑖 = 𝛼

2 ,∀𝑖 . Adaptivity can

128

𝑥 (0)

129

𝑥 (𝛼)

128.2

𝑥 (0)
+1

𝑥 (𝛼) − 𝑥 (𝛼) = −1

𝑥 (0) − 𝑥 (𝛼) = −0.8

𝑥 (0) − 𝑥 (0) = 0.2

Figure 1: Example with building blocks of WS steganalysis.
The input is the stego image (thick border). The cover is
unknown and the cover prediction is derived from the stego
image.

be introduced by conditioning 𝛽𝑖 on the image content through an
adaptivity criterion (or cost function) 𝜁

(
𝒙 (0)

)
, s.t., 𝜁

(
𝒙 (0)

)
𝛼↦→ 𝜷 ,

where
𝛼↦→ is a mapping parameterized by the embedding rate 𝛼 .

HILL. HIgh-pass Low-pass Low-pass (HILL) [36] is a state-of-
the-art steganographic cost function defined as,

𝜁HILL (𝒙 (𝛼) ) = 1��𝒙 (𝛼) ∗ FKB
�� ∗ F (3×3)

AVG

∗ F (15×15)
AVG . (2)

As the name suggests, the input is convolved by three filters: a
high-pass Ker–Böhme (KB) filter F (3×3)

KB [31], and two low-pass
averaging filters. The absolute value | · | and the reciprocal 1

𝒙 are
computed element wise. Fig. 2 shows the filters in Eqs. (4) and (5).

2.4 WS steganalysis
Weighted stegoimage (WS) is a steganalysis method to estimate
the change rate 𝛽 from the stego image with LSBR. The estimated
change rate 𝛽 is given by the covariance between the change direc-
tion of LSBR and the prediction direction,

𝛽 = max
(
0,

1
𝑁

(𝒙̄ (𝛼) − 𝒙 (𝛼) )𝑇︸             ︷︷             ︸
change direction

(𝒙̂ (0) − 𝒙 (𝛼) )︸           ︷︷           ︸
prediction direction

)
, (3)

where 𝒙̄ (𝛼) is the stego with its LSBs flipped and 𝒙̂ (0) is the pre-
dicted cover derived from the stego 𝒙 (𝛼) using a pixel predictor.
In the presence of the predicted cover 𝒙̂ (0) , we call 𝒙 (0) the true
cover. In contrast to [21, 31], Eq. (3) estimates the change rate 𝛽

instead of the embedding rate 𝛼 . Moreover, the order of the sub-
tractions is changed for easier interpretability while maintaining
the mathematical equivalence.

Figure 1 shows an example to build an intuition for WS. The
cover element be 𝑥 (0) = 128, changed by the LSBR embedding
to 𝑥 (𝛼) = 129. The flipped stego value is 𝑥 (𝛼) = 128, and the
pixel predictor yields 𝑥 (0) = 128.2. The change direction is −1,
the prediction direction is −0.8 and the prediction error is 0.2. In
an LSBR stego image, the signs of the change direction and the
prediction direction match more often than in a cover image.

Usual pixel predictors are linear filters with the central weight 0:
3 × 3 averaging filter AVG’ [21] from Eq. (6), KB filter from Eq. (4),
or an adaptive linear filter [31].

We compare the pixel predictors in how close the predicted
covers are to the true covers, using the prediction error, 𝒙̂ (0) −
𝒙 (0) . Linear filters are good pixel predictors, but their performance
worsens at edges and in the textured areas [21].
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FKB =
1
4


−1 +2 −1
+2 0 +2
−1 +2 −1

 (4) F 𝑘×𝑘
AVG =

1
𝑘2


1 . . . 1
.
.
.

. . .

1 1

 (5) F 3×3
AVG’ =

1
8


1 1 1
1 0 1
1 1 1

 (6)

Figure 2: Linear filters used in this paper: KB filter (Eq. (4)), averaging filter AVG (Eq. (5)), and averaging filter AVG’ with zero
center weight (Eq. (6)).

2.4.1 Weighted WS. The weighted variant of WS accounts for the
variability in predictability by introducing weights𝒘 ,

𝛽w = max
(
0,

𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑥
(𝛼)
𝑖

− 𝑥
(𝛼)
𝑖

) (
𝑥
(0)
𝑖

− 𝑥
(𝛼)
𝑖

) )
. (7)

The weighted WS amplifies the evidence from flat areas and at-
tenuates the evidence from textured areas. The weights𝒘 can be
chosen freely, e.g., inversely proportional to local variance 𝝈2 or
as an inverse of a steganographic adaptivity criterion 𝜁 (·), and are
subject to

∑𝑁
𝑖=1𝑤𝑖 = 1. A common choice is𝑤𝑖 ∝ 1

5+𝜎2
𝑖

[21, 31].

2.4.2 Requirements. For WS to be a consistent estimator of the
change rate, several assumptions must hold.

LSBR steganography. LSBR can change each cover element only
in one possible change direction, as seen from Eq. (1). It is this prop-
erty that WS exploits. Embedding operations that draw a random
change direction for each element cannot be detected with WS.

Prediction error uncorrelated with the stego noise. The cover pre-
diction error and the stego noise 𝜹 must be uncorrelated, as shown
in Eq. (8),

corr(𝜹, 𝒙̂ (0) − 𝒙 (0) )︸                   ︷︷                   ︸
Δ
=𝜌

= 0. (8)

By contrast, subtracting the prediction from the stego image 𝑥 (𝛼)
would unduly amplify or attenuate the stego noise, which adds
a bias to 𝛽 , weakening its consistency [5, p. 75]. In practice, this
requirement can be violated by accidentally including the center
element of the linear filter into the prediction.

Uniform payload distribution. Weighted WS assumes a uniform
distribution of embedding changes, a property of steganography
with permutative straddling. Adaptive methods concentrate the em-
bedding changes in the textured areas, which, due to the weighting,
are largely ignored by the steganalyst. If the steganalyst suspects
adaptive LSBR, weighted WS should be avoided [].

2.5 U-Net
U-Net [41] is a fully convolutional network originally proposed for
medical image segmentation. The main idea is to subsample the
image multiple times, and process different resolutions separately.
Then the image is upsampled back step-by-step, combining the local
information from the current resolution with the global information
from the upsampled lower resolution. Therefore it is a natural
choice for the pixel prediction task in WS steganalysis. The local
information can be directly derived from the neighbors and the
global information allows the network to adjust the prediction to
the wider context.
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Figure 3: U-Net architecture from [41], consisting of convolu-
tional layers, concatenation, max-pooling for downsampling,
and transposed convolution for upsampling.

Figure 3 visualizes the U-Net architecture. The network con-
sists of the encoding and decoding parts, with 5 resolution levels,
denoted (0)-(4), each containing a skip connection. Each level of
the encoding part contains two 3 × 3 2D convolutional layers with
symmetric padding and a ReLU activation function. The resolution
is reduced by a 2×2 max-pooling layer, at the entry to the next level.
The decoding part consists of 2× 2 transposed convolutional layers,
which perform the upsampling, with zero-padding and without an
activation function. The skip connections are realized by taking the
activations before the max-pooling and concatenating them along
the channel axis with the upsampled activations. The concatenated
activations are then processed by 3×3 2D convolutional layers with
ReLU activation functions. The final layer is a 1 × 1 convolution
with the desired number of output channels at the resolution of
the input. A sigmoid activation converts the values to the range
[0, 1] [41].

The U-Net design has often been modified for specific tasks [43].
In this paper, we use a subset of U-Net, U-Net(𝑘) , 𝑘 ∈ {0, . . . , 4},
with only 𝑘 subsampling and upsampling levels. In Fig. 3, this is
denoted by the dashed connections, e.g., for U-Net(2) , the dashed
connection at level (2) is active and the solid connections with level
(3) are detached. This modification shrinks the network substan-
tially, reducing the number of weights and its receptive field. This
is acceptable for steganalysis because pixel prediction is a local
neighborhood task.

3 EXPERIMENTS
The objective of this paper is to explore how a U-Net based pixel
predictor can improve WS steganalysis. We proceed experimentally
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and describe our setup in this section: dataset (Sec. 3.1), steganog-
raphy (Sec. 3.2), models (Sec. 3.3) and how we train them (Sec. 3.4),
as well as performance metrics used for the evaluation (Sec. 3.5).

3.1 Data
The experiments are carried out on the BOSSBase dataset [1], con-
sisting of 10 000 grayscale images of size 5122. We split the dataset
and use 6 000 images for training, 2 000 images for validation and
hyperparameter search, and the remaining 2 000 for evaluation.

To evaluate the models’ generalization capabilities, we draw
2 000 raw images from the ALASKA2 dataset [11], process them
with a demosaicking method randomly chosen from DCRAW’s
options {ahd, linear, ppg, vng} [9], crop them to 5122 using smart
crop [10], and finally convert them to grayscale.

3.2 Steganography
We simulate steganographic embedding with LSBR and HILLR at
relative payloads 𝛼 ∈ {0.2, 0.1, 0.05, 0.01}, which follows the setup
from [42]. HILLR is an adaptive LSBR variant with the HILL cost
from Eq. (2) as the adaptivity criterion. Similarly to NUGO [42],
LSBR is applied to elements with HILL costs lower than the 𝛼-
quantile of the cost map, with 𝛼 being the relative payload.

3.3 Models
3.3.1 Linear filters. As the experimental baseline, we use two linear
filters, the 3 × 3 filter F (3×3)

AVG’ from Eq. (6) (denoted AVG’), used
in [21], and the 3 × 3 filter FKB from Eq. (4) (denoted KB), used
in [31]. Pixel prediction F is done by convolution,

𝒙̂ = 𝒙 ∗ F . (9)

3.3.2 U-Net pixel predictor. We propose a pixel predictor U-Net(𝑘)
based on the U-Net architecture, described in Sec. 2.5, and modified
by taking only 𝑘 subsampling steps. Table 6 shows the number of
parameters, receptive field, FLOP count, training time, and training
batch sizes for different choices of 𝑘 . We carry out a comparison of
the networks in Sec. 4.4, including a grid search over 𝑘 , for which
the best choice turns out to be 𝑘 = 2.

KB dropout. U-Net is trained using a dropout. The objective is to
fill the “holes” in the input image with values close to the original
value. We introduce a KB dropout, shown in Fig. 4, as a modification
of the dropout in [45]. KB dropout is formally defined as

𝒙 ′ = 𝒙𝑇 𝒓 + (𝒙 ∗ F (3×3)
KB )𝑇 (1 − 𝒓), (10)

where 𝒓 i.i.d.∼ Bernoulli(𝑝) is the dropout mask and F (3×3)
KB is the KB

filter from Eq. (4). Parameter 𝑝 controls the density of the dropout.
Unlike the conventional dropout [45], KB dropout does not zero

the activations but replaces them with their KB prediction. KB
dropout does not degrade the prediction of the neighboring pixels
as severely as the conventional dropout. Replacing the pixel with
its KB prediction does not change the signal amplitude, so the
remaining activations do not have to be scaled up.

3.3.3 B0 benchmark. Our deep-learning steganalysis benchmark
is EfficientNet B0 [46] in three variants: vanilla [46], with removed
stride in the stem layer (ns-B0) [51], and with removed stride in the
stem layer and the LSBR reference channel, i.e., a second channel

𝒙

×
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0
𝒓

=
0

0
U-Net

𝒙̂

LL1

(a) Conventional dropout.
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× 0
0

0
0

0
0
0

1 − 𝒓

+ = U-Net

𝒙̂

LL1

(b) Proposed KB dropout.

Figure 4: Schema of training a predictor using a dropout on
the input layer. U-Net predicts the entire frame but does not
know which pixels are dropped out.

0
0.01
0.02
0.03
0.04

Lo
ss

Tr
ai
ni
ng

Metric: Lws LL1 LL1+ws

0 10 20 30 40 50 60 70
0

0.01
0.02
0.03
0.04

Epoch

Va
lid

at
io
n

Figure 5: The progress of training and validation loss
LL1+ws = LL1 + Lws. Both loss components decrease simulta-
neously. No overfitting is observed.

with the input image whose LSBs are set to 0, (ns/r-B0) [8]. Note
that this benchmark is a detector, not a quantitative change rate
estimator.

3.4 Training
Both U-Net and B0 were initialized from scratch, with uniform
initialization. Training was done using the optimizer AdamW, and
learning rate 10−4, without augmentations. The specifications for
training of each model are given below.

3.4.1 U-Net. U-Net(2) is trained in two modes: with covers only
and on pairs of cover–stego. The modes use different loss functions
described below.

Cover-only. The cover-only training is done on image samples
without steganography. To prevent the network from copying the
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input directly to the output, the input KB dropout, described in
Sec. 3.3, is applied before the first layer at 𝑝 = 0.1.

The training loss for the cover-only training, LL1, is the MAE
between the predicted cover 𝒙̂ (0) and the true cover 𝒙 (0) ,

LL1 (𝒙̂ (0) ; 𝒙 (0) ) = MAE(𝒙̂ (0) , 𝒙 (0) ) . (11)

Cover–stego. The second training mode builds on the idea to
directly minimize the MAE between the estimated change rate 𝛽
using WS (Eq. (3)) and the true change rate 𝛽 ,

Lws (𝒙 (𝛼) , 𝒙̂ (0) ; 𝛽) = MAE(𝛽, 𝛽). (12)

For this to work, both covers and stego images are used in training.
However, training with the loss Lws from Eq. 12 does not converge.
Thus, we combine Lws with LL1 from Eq. 11 into a final compound
loss,

LL1+ws (𝒙 (𝛼) , 𝒙̂ (0) ; 𝒙 (0) , 𝛽) = LL1 (·) + Lws (·) . (13)
Note that Lws is computed from the input image, the output image,
and the true embedding rate as a label. Usual losses, including LL1,
are computed from the output and the label only. Both Lws and
LL1+ws require cover and stego as inputs, thus they can only be
used in cover–stego training mode.

We train two models, for LSBR and HILLR steganography, at a
constant embedding rate 𝛼 = 0.4. We ensure a balanced represen-
tation of covers and stegos in the batch but do not constrain the
corresponding cover–stego pair to occur together. Unlike in the
cover-only mode, no input dropout is applied. Figure 5 shows the
progress of training and validation loss for these functions.

3.4.2 B0. All three B0 variants are binary classifiers of cover and
stego (LSBR). The training was done using the cross-entropy loss,
with curriculum learning on the relative payload, 𝛼 = 0.4 → 0.2 →
0.1 → 0.05 → 0.01.

3.5 Performance metrics
3.5.1 Prediction. We report the predictability of cover pixels either
as the absolute error, |𝒙̂ (0)−𝒙 (𝛼) |, or the mean absolute error (MAE)
from Eq. (11). In addition, we calculate the MAE on the subset of
hard-to-model pixels, which we identify by taking the 𝜆-quantile
of the HILL cost function,

MAE(𝜆)sub (𝒙̂
(0) , 𝒙 (𝛼) ) = 1

𝜆𝑁

𝑁∑︁
𝑖=1

1𝜌𝑖<𝑞𝜆 (𝝆) |𝑥
(𝛼)
𝑖

− 𝑥
(0)
𝑖

|. (14)

Here, 1condition is the indicator function and 𝑞𝜆 (𝝆) is the 𝜆-quantile
of the cost vector 𝝆. In the experiments, we set 𝜆 = 0.1, i.e., taking
10% of the pixels.

3.5.2 Estimation. As the performance measure of the change rate
estimation, we use the MAE from Eq. (12). To show the violation of
the WS assumption, we measure the correlation 𝜌 from Eq. (8).

3.5.3 Detection. The natural way to turn an estimator into a de-
tector is by thresholding the change rate estimate. We report the
detection performance via Receiver Operating Characteristic (ROC)
curves, which compare the false positive rate, FPR = FP

N , to the true
positive rate, TPR = TP

P , at varying thresholds 𝜏 . We focus on low
FP rates, as required in practice. For comparison we also project
the ROC curve to the scalar metric PE = arg min𝜏 FPR(𝜏)+1−TPR(𝜏)

2 ,

Table 2: Qualitative summary of results comparing the pro-
posed method against state of the art.

Test case Sec. U-Net(2)

LL1 LL1+ws

Pixel prediction 4.1 improves a lot improves
WS estimation 4.2 fails improves
Binary detection 4.3 — improves

Choice of 𝑘 4.4 𝑘 = 2

Correlated prediction 4.5 yes no
Uses center pixel 4.6 yes adaptively

Robust to cover source 4.7 — yes
Robust to embedding fct. — no

KB U-Net(2) /LL1+ws

0

20

40

60

Figure 6: Spatial distribution of absolute prediction errors
|𝒙 (𝛼) − 𝒙̂ (0) | on a sample image 6.png from BOSSBase. Deep
learning-based prediction excels at edges.

Table 3: Errors of the pixel predictors on BOSSBase over the
entire image (MAE) and over textured areas only (MAE(0.1)

sub ).
Lower values are better.

AVG’ KB U-Net(2)

LL1+ws LL1

MAE 4.018 2.681 2.147 0.652
MAE(0.1)sub 9.593 7.083 4.815 1.168

which relates to the point on the ROC curve where the sum of both
error rates is minimal [6, 20].

4 RESULTS
Table 2 shows the outline of this section. A final Sec. 4.8 compares
the proposed loss functions.

4.1 Pixel prediction
In Fig. 6, we use a sample image 6.png from BOSSBase to illustrate
the errors of the pixel predictors, KB and U-Net(2)/LL1+ws. The
errors of both predictors are mainly located in the complex regions
of the image. Observe that the U-Net predictions improve over the
KB filter primarily at the edges.
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Figure 7: Error distribution of pixel predictors, split into bins
of KB filter errors. Lower values are better. U-Net improves
in the areas where the linear filters have the largest error.
Note the non-linear 𝑦 axis.

Table 4: MAEs of WS estimates for different pixel predictors.
Lower values are better. U-Net(2) /LL1+ws improves over the
linear filters. U-Net(2) /LL1 fails.

𝛼
AVG’ KB U-Net(2)

LL1+ws LL1

Cover 0.026 0.007 0.004 0.009
0.01 0.027 0.009 0.006 0.009
0.05 0.029 0.011 0.008 0.021
0.1 0.028 0.012 0.008 0.042
0.2 0.028 0.009 0.008 0.088
0.4 0.025 0.010 0.009 0.183

Next, we aggregate the prediction error over 2 000 images. Ac-
cording to Tab. 3, the best predictor is the U-Net with a loss LL1.
Both U-Net-based predictors outperform the linear filters, espe-
cially in the MAE(0.1)sub metric. This means that the U-Net predictors
improve mainly in low-cost, i.e., hard-to-predict areas.

To confirm where the improvement comes from, we split the
pixels into bins based on the prediction error of the KB filter. This
allows us to make a more conclusive comparison of a selected pixel
predictor with the KB filter. From Fig. 7 we see that U-Net(2) /LL1
improves in all the bins. U-Net(2) /LL1+ws outperforms the linear
filters in complex areas but gets slightly worse in smooth areas.

4.2 Change rate estimation
We use the models as pixel predictors for WS and compute the
change rate estimates 𝛽 . Fig. 8 shows their distribution for two em-
bedding functions and different embedding rates𝛼 . U-Net(2) /LL1+ws
yields accurate estimates with relatively narrow error bars, confi-
dently outperforming the linear filter predictors. U-Net(2) /LL1, the
best pixel predictor from Sec. 4.1, fails as a WS pixel predictor. All
its change rate estimates 𝛽 are close to 0. The reason behind the
failure of this model is explained in Sec. 4.5. We exclude this model
from further experiments.

Table 5: Detection performance of WS with different predic-
tors and variants EfficientNet-B0 on LSBR, reported as PE.
Lower values are better. U-Net(2) /LL1+ws improves over the
linear filters, outperforms B0s for 𝛼 = 0.05 and 𝛼 = 0.1.

𝛼
WS B0

AVG’ KB U-Net(2) B0 ns-B0 ns/r-B0

0.01 0.429 0.381 0.358 0.371 0.220 0.266
0.05 0.236 0.130 0.094 0.215 0.134 0.132
0.1 0.184 0.047 0.023 0.184 0.114 0.102
0.2 0.065 0.011 0.003 0.169 0.114 0.082

Table 6: Number of parameters, receptive field, training batch
size, floating point operations (FLOP) during forward pass,
and training time for different choices of 𝑘 .

# param. Rec. field Batch size FLOPs Training
[103] [109] time

U-Net(0) 37 5 32 19.66 2h33
U-Net(1) 403 12 32 123.82 4h23
U-Net(2) 1862 26 16 227.98 4h30
U-Net(3) 7696 54 16 332.13 7h11
U-Net(4) 31030 110 8 436.28 7h17

B0 3967 512 32 3.9 0h34
ns-B0 3967 512 16 15.46 1h11
ns/r-B0 3967 512 16 15.76 2h16

4.3 Steganography detection
We convert the WS estimator into a detector by setting a threshold
𝜏 for the change rate estimate 𝛽 . The benchmark is EfficientNet
B0 in three variants, described in Sec. 3.3. The B0-based detectors
are trained for a single operational point, 𝜏 ≈ 0.5. We derive the
quasi-ROC curves from their output softmax scores.

Figure 9 compares the detection performance via ROC curves
for the embedding rates 0.01, 0.05, and 0.1. Detection of higher
embedding rates is near-perfect. WS + U-Net(2) confidently out-
performs the other WS-based detectors: at 𝛼 = 0.05 and TPR 0.8,
WS+U-Net(2) achieves half the false positives compared to WS+KB.
WS+U-Net(2) is also better than the B0 variants for 𝛼 ∈ {0.05, 0.1},
yet B0 performs better for a low embedding rate 𝛼 = 0.01.

Table 5 presents these results using the PE metric. As before,
U-Net(2) is the best pixel predictor for WS. For 𝛼 = 0.01, specialized
B0s outperform the WS detectors. Using the reference channel in
B0 does not pay off for short payloads, and the improvements are
smaller than the ones reported for the SRNet architecture [8].

4.4 Grid search for 𝑘
Up until now, the comparison was done with the predictor U-Net(2) ,
i.e., for 𝑘 = 2. This section provides the evidence for this choice. We
repeat the change rate estimation (Sec. 4.2) of all 𝑘 ∈ {0, 1, . . . , 4}
and keep track of predictor performance as well as training and
prediction effort.
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Figure 8: Performance of different pixel predictors in WS. U-Net(2) /LL1+ws improves over the linear filters. U-Net(2) /LL1 fails.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Tr
ue

Po
si
tiv

e
Ra

te

𝛼 = 0.01

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

False Positive Rate

𝛼 = 0.05

Detectors: WS+AVG’ WS+KB WS+U-Net(2) Random B0 ns-B0 ns/r-B0

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
𝛼 = 0.1

Figure 9: Performance of LSBR detectors for different relative payloads 𝛼 as ROC curves. U-Net(2), trained with the loss LL1+ws,
improves over the linear filters and outperforms the B0 benchmarks for 𝛼 = 0.05 and 𝛼 = 0.1.

Figure 10 shows that all models are comparable on both LSBR
and HILLR. The models for 𝑘 ∈ {2, 3, 4} perform nearly identically.
Table 6 shows the properties of the models. The network size grows
approximately exponentially in 𝑘 , whereas the receptive field grows
geometrically. For models 𝑘 ∈ {2, 3, 4}, we had to reduce the train-
ing batch sizes to 16 and 8 due to memory limitations. The time
is specified for training U-Net(𝑘) /LL1+ws on LSBR at 𝛼 = 0.4 on
an NVIDIA A40 GPU with 8 CPU cores, with the patience set to 5
epochs and the batch size unified to 8. For reference, we also report
the training time and parameters of the B0 variants. Observe that
the training time for the proposed U-Net predictor is non-linear in
𝑘 and exhibits a step jump from 𝑘 = 2 to 3.

Taking into consideration the performance and the model pa-
rameters, we choose U-Net(2) .

4.5 Why does the best predictor fail in WS ?
U-Net(2) with loss LL1 was shown to be the best predictor, yet it
completely failed in the change rate estimation in Sec. 4.2. Recall
from Sec. 2.4, that the cover prediction error 𝒙̂ (0) − 𝒙 (0) must be
uncorrelated with the stego noise 𝜹 . We test which models break
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Figure 10: Grid search for depth parameter 𝑘 of our model
U-Net(𝑘)/LL1+ws. The performance is similar for different
choices of 𝑘 .
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Table 7: Median estimate of correlation from Eq. (8) and me-
dian p-value for different pixel predictors on LSBR at 𝛼 = 1.
WS assumes the prediction error to be uncorrelated with the
stego noise. Predictors 1, AVG, and U-Net(2) /LL1 produce cor-
related predictions.

AVG’ KB U-Net(2) 1 AVG

LL1+ws LL1

𝜌 −0.001 −0.001 −0.000 0.015 0.015 0.001
p-value 0.062 0.058 0.052 0.000 0.000 0.030

this assumption, i.e., |𝜌 | = |corr(𝜹, 𝒙̂ (0)−𝒙 (0) ) | > 0, using Pearson’s
correlation test,

𝜌

√︄
𝑁 − 2
1 − 𝜌2 ∼ 𝑡 (𝑁 − 2), (15)

where 𝜌 and 𝜌 are the true and estimated correlation, and 𝑡 (𝑁 −2) is
Student’s 𝑡-distribution with 𝑁 − 2 degrees of freedom. We add two
filters with non-zero central pixel weight, which should produce
correlated prediction, and are thus inappropriate for WS: 1 × 1 unit
filter, denoted 1, and 3 × 3 AVG from (5).

The results are shown in Tab. 7. On the significance level 0.05,
AVG’, KB, and U-Net(2) /LL1+ws have non-significant correlation.
Both filters with non-zero central weights and U-Net(2) /LL1 have a
significant correlation, and thus produce predictions correlatedwith
the stego noise. The model U-Net(2) /LL1 fails as a WS predictor
presumably because it breaks one of its assumptions.

4.6 Receptivity of the predictor
We illustrate the U-Net receptivity to the pixel neighborhood via
signed saliency maps, i.e., the gradients of the input pixels w.r.t. a
single output pixel 𝑥 (0)

𝑖
,

𝑔𝑖 (𝑑) =
𝜕𝑥

(0)
𝑖

𝜕𝑥
(𝛼)
𝑖+𝑑

, (16)

where𝑥 (𝛼)
𝑖+𝑑 is the input pixel with offset𝑑 to the output pixel, i.e.,𝑑 =

0 for the center pixel. For Fig. 11, we expand the one-dimensional
notation to two dimensions as 𝑑 → (𝑑𝑥 , 𝑑𝑦). Recall that saliency
maps may resemble the linear filters, however, their interpretation
is different. They visualize the direction and magnitude of change
to the output pixel caused by changing each input pixel by one unit.

We choose as center pixels four selected positions in the sample
image 6.png from BOSSBase – the pixels with the largest and the
smallest gradient, and the strongest horizontal as well as vertical
edge, as shown in Fig. 11. Figures 11b and 11c show the saliency
maps for each of the four center pixels, aligned according to Fig. 11a.

Interpreting Fig. 11b, U-Net(2) /LL1 predicts the output mainly
from the center pixel regardless of the content. The KB dropout
does not prevent copying of the center pixel through. By contrast,
U-Net(2) /LL1+ws combines the neighborhood surrounding the cen-
ter pixel, as shown in Fig. 11c. The neighborhood for the prediction
is wider than 3×3 used by the linear filters, but the weights fade out
with distance. Note that the pixel prediction is content-adaptive. In

Table 8: Effect of dataset mismatch. MAE of predictors
trained on BOSSBase, evaluated on the ALASKA2 dataset.
U-Net(2) /LL1+ws still outperforms the linear filters but with
a smaller margin.

Predictors AVG’ KB U-Net(2)

LL1+ws

MAE 3.976 2.776 2.696
MAE(0.1)sub 5.623 3.992 3.641

the smooth areas, the center pixel is omitted and the neighborhood
is weighted in a checkerboard pattern, similar to the KB filter. In
the textured areas, the center pixel contributes to the prediction.

To ensure that these saliency maps are representative for cover
as well as stego images, and rule out that the U-Net has learned to
detect steganography, we repeat the same analysis on stego images
with LSBR at different embedding rates. We could not observe any
noteworthy differences.

4.7 Generalization of the predictor
In this section, we evaluate the capability of the predictor to gen-
eralize to two mismatched conditions: mismatching dataset, mis-
matching embedding strategy, and their combination.

4.7.1 Mismatched dataset. We choose ALASKA2 in order to evalu-
ate the predictor’s performance on a mismatching dataset. We run
these three steps: prediction, change rate estimation, and detection
(but keep training on BOSSBase).

The predictability results, shown in Tab. 8, are to be directly
compared to the matched case in Tab. 3. U-Net with LL1+ws still
performs better than the linear filters, although the improvement
margin is smaller. Moreover, the improvement margin between
AVG’ and KB filters also gets smaller. This is perhaps due to the
harsh downsampling of BOSSBase, which makes this dataset intrin-
sically more difficult to predict than ALASKA2.

The robustness to the dataset is also explored on change rate
estimation. The results on ALASKA2 in Fig. 12 are to be compared
to the matched case in Fig. 8. The WS estimates with the U-Net(2)
predictor get slightly worse, unlike WS with the KB filter.

We convert the change rate estimator to a detector and showROC
curves in Fig. 13, which is comparable to the matched case in Fig. 9.
Observe that the margin between U-Net(2) and KB becomes very
thin. Comparing Fig. 13 to Fig. 9 reveals that analytical detectors,
including our proposed one with a learning-based predictor, react
in very different ways to dataset mismatch than a purely learned
detector. While the performance of all three WS variants is better
than on BOSSBase, EfficientNet B0 gets significantly worse due to
the dataset mismatch.

4.7.2 Mismatched embedding function. We evaluate the effect of
mismatch in the embedding function using the predictors trained
on LSBR to estimate the change rate of HILLR steganography on
BOSSBase.

Figure 14 shows the results and should be compared to the
matched case in Fig. 8. Observe that the WS estimates of U-Net(2)
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(b) U-Net(2) /LL1 uses mostly the center pixel.
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(c) U-Net(2) /LL1+ws uses a larger neighborhood, but also
the center pixel in three out of four locations.

Figure 11: Signed saliency maps with gradients 𝑔𝑖 (𝑑) of selected pixels to illustrate the receptivity of the predictors in different
local neighborhoods. The grids are aligned according to Fig. 11a. Predictors are adaptive w.r.t. the complexity and directionality
of the texture.

Cover 0.1 0.2 0.4
0

0.1

0.2

Embedding rate 𝛼

Es
tim

at
ed

ch
an
ge

ra
te

𝛽

Predictors: AVG’ KB U-Net(2) /LL1+ws U-Net(2) /LL1

Figure 12: Effect of dataset mismatch. Performance of dif-
ferent WS predictors, trained on BOSSBase, evaluated on
ALASKA2. The performance of U-Net(2) /LL1+ws and linear
filters is comparable.
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Figure 13: Effect of dataset mismatch. ROC curves of LSBR
detectors trained on BOSSBase and evaluated on ALASKA2
at embedding rate 𝛼 = 0.1.
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Figure 14: Effect of mismatching embedding functions.
Performance of different predictors of WS, trained on
LSBR, evaluated on HILLR. The predicted change rates of
U-Net(2) /LL1+ws are off.

with LL1+ws are inconsistent and perform inferior to the linear pre-
dictors. However, they may still serve as a usable detector (unlike
U-Net(2) /LL1), because they separate stego images and covers.

4.7.3 Mismatched dataset and embedding function. As a final ex-
periment, we combine both mismatch conditions and evaluate the
predictors on the ALASKA2 dataset with HILLR steganography.
Again, wemeasure the change rate estimation only. Figure 15 shows
that the effect is very similar to the case of mismatching embedding
function only.

4.8 Comparison of the loss functions
We close the results section by recalling why the choice of the
loss function is critical. The rightmost columns of Tab. 2 (above)
summarize the presented results in qualitative statements for each
loss function.

Although LL1 leads to the best model in the pixel prediction, it
fails in the WS estimation. As shown in Sec. 4.5, predictors trained
with this loss function violate the WS assumption in Eq. 8 and
their predictions include the center pixel. By contrast, our proposed
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Figure 15: Effect of combinedmismatch in dataset and embed-
ding function. Training on BOSSBase with LSBR, evaluation
on ALASKA2 with HILLR.

U-Net(2) using LL1+ws improves in all three test cases compared
to the linear filters. The predictors trained with this loss function
seem to satisfy the assumption although theymake use of the center
pixel in certain conditions (see Sec. 4.6).

5 DISCUSSION
Our proposed U-Net-based pixel predictor improves over conven-
tional linear predictors in WS steganalysis. By thresholding the WS
estimate of the change rate, we construct a steganalysis detector,
which outperforms the state-of-the-art detectors for LSBR in certain
cases. Our construction as a change rate estimator lets the method
generalize to unseen payload lengths quite naturally.

As diffusion models are primarily used to denoise an image, us-
ing them for pixel prediction in steganalysis is not straightforward.
The most critical aspect when adapting U-Net to the steganaly-
sis task is the choice of the loss function, which must reflect the
requirements of the downstream estimator. WS assumes that the
prediction error does not correlate with the stego noise. The loss
function we propose includes a term that penalized undue correla-
tion. As a result, the receptivity of the predictor spans a broader
neighborhood and tends to deemphasize the center pixel.

While we cannot claim generality, our results also provide first
indications that incorporating deep learning as a component into
analytical steganalysis methods may generalize better to unseen
conditions than detectors based solely on deep learning. This may
open an unexplored avenue toward mitigation of cover-source
mismatch [38].

Limitations. Replacing linear filters with a U-Net predictor in-
troduces additional overhead. The number of parameters increases
from none to millions. The processing time per image on our test
CPU increases from 6 to 660 milliseconds. A previously absent
learning phase, connected with computational resources and the
collection of training samples, is required to estimate U-Net weights.
A common limitation of all deep learning-based steganalysis is
higher uncertainty regarding generalization to unseen data and em-
bedding methods. While this effect was not drastic in the scenarios
studied here, we cannot rule out that very different cover sources
or adaptivity criteria exist that lead to failure. A general limitation

of WS is that it is tailored to detect LSBR steganography, which
has structural weaknesses that help the steganalyst compared to
state-of-the-art spatial-domain steganography.

Future work. Our modified loss function is critical for the suc-
cessful use of U-Net as a predictor in WS steganalysis. In its current
form, undue correlation is penalized indirectly via the error of the
WS estimate, which requires training in cover–stego mode. A next
step would be to avoid this complication and enable cover-only
training, for example by adding a penalty term that is directly tied
to the amount of undesired correlation. Another possible way to
adapt U-Net without touching the loss function would be to prune
the connection structure of the network such that the center pixel
cannot be used for the prediction.

In this work, we have experimented with unweighted WS be-
cause adaptive steganography was part of the experiments. Weights
in WS remain an open question. This is also related to the known
sensitivity of WS to previous JPEG compression [4]. Further exper-
iments could be done regarding the generalization capabilities, for
example to quantify the effect of the input size, as recently studied
by [7] for CNN detectors.

The U-Net architecture was chosen for its popularity and mod-
ularity. Future work should also consider other possible network
architectures for pixel prediction, such as DnCNN [53]. More gen-
erally, deep-learning based pixel predictors have not fully been
appreciated in information hiding. Their prediction error could be
used to construct new distortion metrics and detectors.

6 RELATEDWORK
WS steganalysis. WS steganalysis was introduced in 2004 [21]

and revisited in 2008 with an improved pixel predictor, modified
weighting, and introducing bias correction [5, 31]. WS was also
extended for LSBR in the JPEG domain [4], for adaptive LSBR [42],
and payload localization in batch steganalysis [29]. [32] showed that
WS can be a near-perfect detector when linear demosaicking is used.
[13, 14, 54] explore the relationship between WS and likelihood-
ratio test. Later works on LSB matching detection [12, 15] use WS
filtering, estimating the pixel prediction and local variance in the
same way as WS.

U-Net-based pixel prediction. Pixel predictor is an umbrella term
for models estimating pixel values, with the pixels known either
approximately, or not at all [31, 53]. This encompasses denoising
and inpainting, very different tasks, which share similarities in the
single-pixel scenario. U-Net, a fully convolutional neural network
architecture originally proposed for biomedical image segmenta-
tion [41], was successfully applied to many different image process-
ing tasks, including denoising [24, 35], image inpainting [27, 37, 49],
or synthetic image generation [3, 25, 40]. In steganography, U-Net
has been previously used for probability map generation [50] and
in a complete scheme involving U-Net-based embedding and ex-
traction functions [17]. This paper brings a new deep-learning
architecture to steganalysis, similar to [6, 51]. Unlike them, it does
not propose a steganalysis detector, but a pixel prediction compo-
nent to be used in an existing framework. We choose U-Net for its
universality and popularity and keep other similar networks, such
as DnCNN [53], for future work.
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7 CONCLUSION
This work explores how to combine the best of both worlds: an
analytical, well-understood quantitative steganalysis method, im-
proved by replacing one of its components with deep learning. Our
results give some hope to the research of analytical methods. Clean
ideas can outperform the blind application of deep learning. We
should use neural networks in a smart way, combined with prior
domain knowledge, if we want to overcome the challenges, such as
the cover-source mismatch [38], or moving from the laboratory to
the real world [30].

The source code, trained models, and selected data underly-
ing the figures and tables are available at https.//github.com/uibk-
uncover/ws-unet.
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