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Abstract—One of the challenges in steganalysis based on
machine learning is cover-source mismatch (CSM). It occurs
when a detector is trained on cover and stego pairs generated
from one data source and then applied to data of unknown type
from a different source. The mismatch leads to an increase of
the classification error, which corresponds to a loss of detection
performance. This paper studies how much the implementation
of the JPEG compression and decompression contributes to the
CSM of color image steganalysis. Specifically, it studies the
differences between libjpeg versions 6b and 7. The impact on
the CSM is measured for J-UNIWARD embedding using JPEG
and spatial rich models with an ensemble classifier. It is observed
that the use of different libjpeg versions may cause CSM. The
error is large when different libjpeg versions are used for feature
extraction, and barely measurable when different versions are
used for the generation of cover and stego pairs.

Index Terms—jpeg, libjpeg, steganalysis, cover-source mis-
match, compression, decompression

I. INTRODUCTION

Applying steganalysis methods developed in laboratory
conditions to real-world environments is difficult [1]. One
reason for that is cover-source mismatch (CSM). Differences
between cover sources appear in many forms, such as different
image resolution, size, and format; processed images, images
acquired by different hardware, and under different condition,
as listed in [2]. Although well-recognized as a critical factor
affecting the performance of steganalysis [3], [4], dealing with
the CSM remains challenging because the large number of
potentially influencing factors is barely tractable [5].

This work presents existential results for another, so far
overlooked factor in image steganalysis: the JPEG imple-
mentation. The free, open-source, and cross-platform C li-
brary libjpeg is the established reference implementation for
processing JPEG images [6]. It is the workhorse of numer-
ous image processing libraries in high-level programming
languages and applications built with them. A recent study
found that different libjpeg versions may produce differences
in compression and decompression output with a magnitude
comparable to the differences produced by switching discrete
cosine transform (DCT) methods [7]. However, it is yet
unknown whether and to what extent these differences affect
steganalysis performance and contribute to the CSM.

In a first step addressing this research gap, this paper
• demonstrates that the use of different libjpeg versions

for training and testing can reduce the performance of
a common steganalysis method; and

• quantifies the performance loss using the empirical total
probability of error.

Specifically, we use J-UNIWARD as embedding function [8],
JSRM features with an ensemble classifier as detector [9], and
10,000 never-compressed color images from the ALASKA2
dataset [10].

The organization of this paper is as follows. Section II
recalls relevant concepts of JPEG compression and elaborates
on the CSM in steganalysis. Section III explains the experi-
mental setup and the fundaments of the embedding function
and the detector used. Section IV presents the results, which
are further discussed in the concluding Section V.

II. BACKGROUND

Here we recall the basic concepts of JPEG image compres-
sion and summarize what is known about the CSM.

A. JPEG Compression

JPEG is a widely adopted lossy image compression stan-
dard [11]. It transforms digital image data from the spatial to
the frequency domain, specifically DCT, where high-frequency
information, e. g. sharp transitions in brightness or color, can
be reduced virtually imperceptibly. The use of the Y CbCr

color model separates the luminance from the chrominance,
which can be downsampled even further due to the lower
sensibility of the human eye to color.

The popularity of the format along with the relative ease
of modeling statistical distributions of frequency domain co-
efficients make JPEG a good choice for secure steganographic
communication.

In 1991, the Independent JPEG Group established libjpeg
as JPEG codec for image compression [6]. Since then, several
new versions were released, ranging from libjpeg version 1
to the latest version libjpeg 9e, published in January 2022.
Popular forks are libjpeg–turbo [12] and mozjpeg [13].

B. Cover-Source Mismatch

For more than 15 years, researchers in steganalysis have
been struggling with the CSM [5]. Differences in the cover
source can originate from the various steps in the image



processing pipeline. Researchers in the field have started
to systematically evaluate the impact of each step of the
pipeline, including differences in the sensor [2], [14], de-
mosaicking [15], [16], ISO sensitivity [14], [17], white bal-
ancing [15], gamma correction [15], color adjustment [17],
image processing software [14], [15], [17], and compression
quality [14], [18].

To describe the magnitude of the CSM between two sources,
Giboulot et al. [14] establish the terms source inconsistency
and source intrinsic difficulty. The former refers to the discrep-
ancy in classification errors which occurs when training with
source A compared to when training with source B. However,
source inconsistency does not take into account the detection
performances of the compared sources. Therefore the source
intrinsic difficulty is used jointly. It describes the classification
error when the training and test set derive from the same
source. A high classification error indicates high difficulty.

One can distinguish three approaches to mitigate CSM [14]:
1) the atomistic/islet approach, used for example in [5],

[19], which splits a dataset into clusters with regard to
image properties;

2) the holistic approach, used in [20], which does the oppo-
site: creating an as diverse training dataset as possible;
and

3) transfer learning, which transfers training and test
datasets between domains.

Our work tries to establish the existence of the CSM for
a not yet studied factor. It is closest to the atomistic approach.
The relevant image property is the JPEG implementation
used to generate cover and stego pairs and, independently, to
calculate steganalysis features.

III. APPROACH

In this section we describe our experiment, starting with
the embedding function used by the steganographer, followed
by the detector of the steganalyst.

A. Embedding

A common approach to obtain hard-to-detect steganogra-
phy is to embed the payload while minimizing a distortion
function. In 2014, Holub et al. [8] introduced a “universal”
distortion design called Universal Wavelet Relative Distor-
tion (UNIWARD). It supports embedding methods for the
spatial domain (S-UNIWARD), JPEG domain (J-UNIWARD),
and side-informed JPEG domain (SI-UNIWARD). UNIWARD
estimates a cost matrix related to the impact of embedding
changes on the statistical distortion of the image. In the
basic form, J-UNIWARD modifies the non-zero quantized
AC coefficients of the luminance channel while keeping
the chrominance channels untouched.

According to [8, Sect. 6.2], the detectability of J-UNIWARD
in the JPEG domain is lower than nsF5 [21], the state
of the art embedding method in the JPEG domain at that
time. We choose J-UNIWARD for the embedding due to its
popularity and readily available implementation. Moreover, it
is considered to belong to the most secure embedding methods
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Fig. 1. Alice’s system model

in the JPEG domain [22]. We pick a stabilization constant
σ = 2−6, described as the optimal one by the J-UNIWARD
authors. In this setup, the out-of-bag (OOB) error of the
JSRM+EFLD model is about 0.18 [8, Figure 6].

B. Rich Models

Now we turn to the steganalyst. Rich models were intro-
duced in 2012 and designed specifically for steganalysis [23].
They are feature sets of large, fixed dimensionality, modeling
the relation between adjacent samples.

SRM is the first rich model. It is computed from the spatial
domain [23]; hence the name spatial rich model (SRM).
The noise residuals of the image, which are used for feature
extraction, are quantized with q ∈ {1, 1.5, 2} and the result has
34 671 dimensions. The subset SRMQ1 only contains features
for q = 1, with 12 753 dimensions. SRMs are designed for
grayscale images.

Cartesian-calibrated JPEG Rich Models (cc-JRM) [9] are
rich models for the JPEG domain with 22 510 dimensions.
Here, the features are extracted from the DCT coefficients.
Cartesian calibration (cc) is used to exploit the regularity of
a JPEG 8×8 grid, which has been the key insight behind
a number of successful attacks against embedding functions
in the JPEG domain [24], [25].

The union of cc-JRM and SRMQ1, denoted JSRM [9] has
34 671 dimensions combining features from both the spatial
and JPEG domain.

C. Detector

Following [26], we construct an ensemble of at most 500
base learners with a stopping criterion based on the moving
average of OOB. Each base learner implements Fisher’s Linear
Discriminant (FLD) analysis [27] with a subset of dsub random
features, where dsub is automatically chosen as described in
Section II/C of [26]. The aggregation to the final class uses
majority voting.

Although it has been shown that deep learning in steganaly-
sis can be at least as precise as rich models [28], JSRM+EFLD
is still competitive [9]. Its comparative simplicity, the reliance
on JPEG operations, and the susceptibility to the CSM error
make it an ideal target for this first study.

D. Dataset

For our experiments we select a random sample of
10,000 never compressed color images from the ALASKA2
dataset [10]. It contains images from 24 different cameras. To
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limit storage and compute efforts, we work with the reduced
dataset of cropped images of size 256 × 256 pixels, called
ALASKA_v2_TIFF_256_COLOR [10].

E. Experimental Setup

Our experiments seek to examine whether the choice of
the libjpeg version affects steganalysis performance and con-
tributes to the CSM. The versions used in this work are
libjpeg 6b and 7. The choice is based on prior work, which
establishes that those versions produce the biggest differences
in outputs for the same image. They are of the same magnitude
as, for instance, switching between different DCT methods [7].

The experiments are divided into the steganography part,
performed by Alice, and the steganalysis part, performed by
Eve. Alice’s and Eve’s libjpeg implementations are chosen
independently.

By convention, an image in the spatial domain is denoted x
and in the DCT domain y. Cover objects have the superscript
(0) and stego objects have the superscript (1), regardless of
the embedded message.

a) Steganographer Alice: Alice starts with a never-
compressed source image xsrc and compresses it to a JPEG
cover y(0). This cover is used to train a classifier along with
the corresponding stego image. Alice produces the stego image
y(1) by embedding a message m into the cover image y(0) us-
ing the J-UNIWARD embedding function with an embedding
rate of 0.4 bits per non-zero DCT AC coefficient (bpnzac).
Since J-UNIWARD requires a spatial domain representation to
estimate the embedding cost of DCT coefficient changes, y(0)

needs to be decompressed to the JPEG pre-compressed cover
x(0) in spatial domain. We assume that Alice uses the same
libjpeg version for compression and decompression, noting
that this may not always be the case in practice. Figure 1
illustrates her workflow.

b) Steganalyst Eve: Figure 2 illustrates Eve’s system
model. Her input is an image of unknown type y(∗), meaning
it can be a cover y(0) or a stego image y(1). Eve starts with
decompressing the input, resulting in x(∗). For the cartesian
calibration she crops the image by 4 pixels on all sides and
re-compresses it, resulting in y

(∗)
cc . We assume that Eve uses

the same libjpeg version for compression and decompression.
Note, that this assumption is more realistic for Eve’s task
than for Alice’s. The images y(∗) and y

(∗)
cc are used to

extract the cc-JRM features from the luminance channel, and
the decompressed input x(∗) for the SRMQ1 features.

As SRMs are designed for grayscale images, we extend
them to color images by extracting the features from the green
channel only, which is most correlated with the luminance
channel used for embedding. Our initial experiments with
features extracted from a conversion to grayscale produced
inferior results, in line with [29]. So we abandoned this
alternative. Both feature vectors are combined to produce the
JSRM feature vector jsrm(y(∗)).

In order to train the model, Eve instantiates both Alice’s
and her system model and produces cover and stego pairs with
known labels. In our experiments, we vary the libjpeg versions
for Alice and Eve during this training process independently
from the libjpeg version used for Alice and Eve when testing
(i. e., simulating the classification of unknown types). With two
libjpeg versions, two system models, and two phases (training
and test), we get a total of 22
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= 16 combinations, dealing with
22 = 4 different trained classifiers indexed with the roman
numbers I–IV. All experiments use a single 7 500 : 2 500 split
of cover/stego pairs (and corresponding feature vectors) for
training and testing.

F. Implementation

For compressing and decompressing JPEG images we use
libjpeg with a Python wrapper that supports version selec-
tion [30]. We use the Matlab code provided by the Digital
Data Embedding Laboratory [31] for J-UNIWARD simu-
lator (J_UNIWARD.m) and feature extractors for SRMQ1
(SRMQ1.m) and cc-JRM (ccJRM.m).

A single process on a MacBook Pro 2020/M1 machine
ran for two hours to embed J-UNIWARD into 10 000 cover
images, 16 hours to extract the JSRM features from both
cover and stego images, and about 10 minutes to train one
of the four classifiers based on the extracted features. The
features computed once for a combination of library versions
could be reused in tests of all four classifiers. For replicability,
we make our code and the extracted feature vectors available
on GitHub.1

IV. RESULTS

Table I reports the performance of four classifiers, each
trained and evaluated with a different combination of libjpeg

1https://github.com/uibk-uncover/libjpeg-CSM



TABLE I
CLASSIFICATION PERFORMANCE USING DIFFERENT COMBINATIONS OF LIBJPEG VERSIONS

Classifier Training Evaluation Test data Training data

Alice Eve Alice Eve PE PFP PMD PE PFP PMD

I

6b 6b 6b 6b 0.29 0.29 0.29 0.17 0.18 0.16
6b 6b 6b 7 0.29 0.44 0.13 0.24 0.41 0.07
6b 6b 7 6b 0.29 0.29 0.28 0.23 0.20 0.27
6b 6b 7 7 0.28 0.44 0.13 0.27 0.42 0.12

II

7 7 6b 6b 0.51 0.31 0.70 0.44 0.17 0.71
7 7 6b 7 0.31 0.31 0.30 0.25 0.20 0.30
7 7 7 6b 0.50 0.31 0.70 0.41 0.15 0.66
7 7 7 7 0.30 0.31 0.30 0.18 0.17 0.18

III

6b 7 6b 6b 0.50 0.30 0.69 0.41 0.17 0.65
6b 7 6b 7 0.30 0.30 0.31 0.20 0.20 0.20
6b 7 7 6b 0.51 0.31 0.70 0.46 0.20 0.71
6b 7 7 7 0.31 0.30 0.31 0.26 0.22 0.30

IV

7 6b 6b 6b 0.29 0.29 0.28 0.23 0.18 0.27
7 6b 6b 7 0.28 0.44 0.13 0.26 0.42 0.11
7 6b 7 6b 0.28 0.29 0.28 0.16 0.16 0.16
7 6b 7 7 0.28 0.44 0.12 0.24 0.41 0.07

versions. For each combination we report the probabilities
of false positives PFP, missed detections PMD, and their mean,
the total probability of error PE. Lower error indicates a better
model performance, i. e., improved detectability. Cells high-
lighted in yellow denote baseline cases where the JPEG
implementations for training and test are identical, meaning
that no CSM is present. Figures in red guide the reader to
the relevant cases of CSM error.

Classifier I seems to be robust against version changes
in the test data. However, under the surface we can see
an increase of PFP and a decrease of PMD, whenever Eve’s
version changes for evaluation.

When looking at classifier II, which uses version 7 for
Alice and Eve to produce training data, we see a comparable
intrinsic difficulty (highlighted in yellow). However, as soon as
Eve’s version changes for evaluation, we observe an increase
in the error rate. We interpret this as evidence for the CSM
error due to the JPEG implementation, specifically the libjpeg
version. Looking at the values in column PMD, we see that this
performance loss is a result of an increase in missed detections.
Changing Alice’s libjpeg version, on the other hand, does not
seem to impact the performance in this setting.

This holds true even in the case where Eve is aware of
the problem and deliberately trains the classifier on data
produced with a different version (classifiers III and IV).
However, we see differences depending on Eve’s version
used for generating training data. Again, when trained with
data generated using version 6b, the classifier appears robust.
In the case where Eve uses version 7 for training and ver-
sion 6b for evaluation, we observe the same increase in the
error rates, as seen before in classifier I.

For all classifiers we show the discrepancy between the PE
on test data versus training data, which indicates overfitting.
For example, classifier I produces as little as 17 % classifica-

tion error on training data, whereas it errs in 29 % on the test
data. While this is not very surprising for rich models given
the dimensionality of the feature space and dataset, we note
that overfitting can amplify the sensitivity to CSM. However,
we are not aware of work stating that the CSM disappears
when overfitting is avoided.

Summarizing our results, we see that a change of the
compression library version after embedding can have an
effect on the CSM. We observe a CSM error in cases where
Eve trains a classifier using version 7 and extracts features for
the classification of unknown material using version 6b. While
this provides existential evidence for the relevance of the JPEG
implementation for CSM, we observe its strongest impact in
situations that the steganalyst can control. She would be in
a more challenging situation if knowledge of Alice’s libjpeg
version was decisive for the detection performance.

V. CONCLUSION

We emphasize that when JPEG compression is part of the
cover image processing pipeline, special attention should be
paid to the choice of the JPEG implementation, including the
version of libjpeg.

It is worth recalling the limitations of this initial study.
The experiments were carried out using one embedding
method with a single embedding and rate, one steganalysis
model, and two JPEG codec versions known to produce dif-
ferent outputs. We also fixed the version for compression and
decompression to be the same in Alice’s system model. This
suffices as a proof of existence of an effect of the JPEG library
version on the CSM error. But we warn against generalizing
our results prematurely. Further investigations are needed to
characterize the conditions and magnitude of this effect.
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