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Figure 1: Differences between libjpeg version 6b and 9e. Mismatching RGB values are set to maximum intensity.

ABSTRACT
Introduced in 1991, libjpeg has become a well-established library
for processing JPEG images. Many libraries in high-level languages
use libjpeg under the hood. So far, little attention has been paid
to the fact that different versions of the library produce different
outputs for the same input. This may have implications on security-
related applications, such as image forensics or steganalysis, where
evidence is generated by tracking small, imperceptible changes
in JPEG-compressed signals. This paper systematically analyses
all libjpeg versions since 1998, including the forked libjpeg–turbo
(in its latest version). It compares the outputs of compression and
decompression operations for a range of parameter settings. We
identify up to three distinct behaviors for compression and up to
six for decompression.
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1 INTRODUCTION
JPEG is a popular method for image compression that reduces
imperceptible information (and hence file size) while preserving
perceptual quality. Standardized in 1991, the method has been im-
plemented in many codecs, and the data format is supported by
thousands of applications [12]. Due to its popularity, extensive
research covers many aspects of JPEG compression [9, 10, 21].

The JPEG standard does not prescribe a single canonical way
of compression and decompressions. This “generic” approach [31]
leaves some degree of freedom for different implementations to
be tailored to the needs of the application or platform. As a result,
not every instance of a JPEG codec produces the same output for a
given input. While small numerical deviations may not be percep-
tible to human observers and thus not relevant in the majority of
applications, a number of applications in multimedia security rely
on subtleties of compression and decompression operations.

Chiefly these include image forensics and steganalysis. A com-
mon technique in image forensics is to analyze JPEG compres-
sion artifacts to estimate the compression history or detect ma-
nipulations of a digital image [32]. Steganalysis aims to detect the
existence of steganographic messages. Recent machine learning-
based steganalysis has been reported to be sensitive to the exact
knowledge of the cover generation process, which includes JPEG
pre-compression [11]. Moreover, a well-known steganalysis tech-
nique is the JPEG compatibility test [10], which detects embedding
changes in stego objects created from JPEG pre-compressed covers.
A recent revision of this technique has pointed out the sensitivity to
the decompressor implementation [8], but a systematic evaluation
of the differences between libjpeg versions is still missing.

The effect of the JPEG implementation has been subject of prior
research, but existing results are fragmented and usually compare
pairs of implementations only. Observing such differences is quite
straightforward, as illustrated in Figure 1. A never-compressed
source image has been compressed using 4:2:0 color subsampling
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and then decompressed using “fancy” upsampling, once with lib-
jpeg version 6b and once with version 9e. The two resulting output
images are compared in the spatial domain with differences am-
plified by setting the respective RGB value to maximum intensity
(255). Lai and Böhme [18] note that the choice of libjpeg’s DCT
method affects the reliability of a forensic technique based on JPEG
block converges in grayscale images. Carnein et al. [5] generalize
this method to color and draw attention to differences in the color
subsampling method used in libjpeg version 6 and 7. Bonettini et
al. [4] show how to distinguish two JPEG implementations from
their outputs: Adobe’s proprietary one and the Python Imaging
Library (PIL) version 5.2.0, which uses libjpeg under the hood. Their
method is claimed robust to the choice of the quantization matrix
and the presence of double compression. Most recently, Lorch and
Riess [20] discover the characteristic “chroma wrinkles,” which are
caused by the rounding to integers in libjpeg version 9a (when set
to simple scaling) and libjpeg–turbo version 2.0.1 (by default).

To the best of our knowledge, this work contributes
• the first systematic comparison of all libjpeg versions since
1998, including the recent version of libjpeg–turbo (2.1.0);

• results from two series of experiments, one for compression
and one for decompression;

• an analysis of the impact of parameters supported by the
libjpeg API on differences between versions; and

• a quantification of the magnitude of the observed differences.
This paper proceeds as follows. Section 2 reviews the evolution

of libjpeg and recalls relevant parameters of its API. Section 3
documents the experiments and all results. Section 4 discusses the
findings, describes limitations, and outlines future work.

2 BACKGROUND
In 1991, the Joint Photographic Experts Group (JPEG) submitted
the specification for the JPEG format, which was later approved as
an international standard for image processing by the ISO [14] and
ITU [15]. It was implemented by the Independent JPEG Group (IJG),
as an open-source, free and easy-to-use C library, called libjpeg [13].

2.1 Evolution of Libjpeg
According to the IJG, version 6b, is the first “solid and stable ver-
sion” [13]. It has not been updated for more than a decade, making it
the de-facto standard JPEG codec for image processing libraries [28].
In 2010, libjpeg–turbo was introduced, which optimizes the perfor-
mance of version 6b by using SIMD instructions: MMX and SSE
on x86, and later Neon on ARM [1]. This strand has seen 35 differ-
ent versions between 2010 and 2021, which we deemed too many
to include all of them in this analysis. Instead we chose to use
libjpeg–turbo version 2.1.0 only. In 2014, Mozilla forked libjpeg–
turbo into mozjpeg, which reduces web page loading times by en-
abling stronger compression at the same perceived quality. This
optimization comes at the cost of compression performance [22].
Mozjpeg uses progressive JPEG by default, unlike all versions con-
sidered in this work. As any comparison would be artificial and
hard to interpret, we exclude mozjpeg from our analysis. In 2019,
libjpeg–turbo became the official reference implementation for the
JPEG standard [16]. Figure 2 illustrates the timeline of all libjpeg
versions and relevant forks between 1998 and 2022, and Table 1

summarizes relevant changes to the library. Some terminology in
this table is specific to the libjpeg API and introduced next.

Table 1: Authors’ digest of the libjpeg release notes [24]

Version Release Significant changes

7 2009-06-27 DCT scaling; arithmetic coding; color inter-
polation (fancy downsampling)a

8 2010-01-10 SmartScale extension

8a 2010-02-28 Improve accuracy in floating point IDCT

8b 2010-05-16 Minor improvements

8c 2011-01-16 Minor improvements

8d 2012-01-15 RGB JPEG file support

9 2013-01-13 Reversible color transform for RGB JPEG
files (not backward compatible)

9a 2014-01-19
Wide gamut color spaces; more accurate
color conversion; extended bit depth and en-
tropy decoder

9b 2016-01-17 Improvements in DCT and color calculations

9c 2018-01-14 Minor improvements

9d 2020-01-12 Huffman code table generation optimization;
64-bit platform support

9e 2022-01-16 Change of default chrominance DC quanti-
zation factor (to support lossless)

a Complementing fancy upsampling implemented earlier

2.2 Relevant API Parameters
Recall that JPEG compression cuts a spatial domain image channel
into blocks of (usually) 8 × 8 pixels, applies block-wise 2D discrete
cosine transformation (DCT), and divides the resulting coefficients
by subband-specific quantization factors before rounding to the
nearest integer. This step is lossy with adjustable quality: larger
quantization factors result in smaller numbers and more zeros.
This leads to shorter output sizes as lossless compression, namely
difference encoding followed by run-length and Huffman coding, is
applied when producing the bit stream. JPEG decompression reverts
this process to the extent possible with the remaining information.

The most relevant parameters exposed by the libjpeg API are:

Color Space. Spatial domain images are typically represented
in 𝑅𝐺𝐵 colors or as grayscale. The first step of JPEG compression
maps colors to the 𝑌𝐶𝑏𝐶𝑟 space, where the 𝑌 channel describes the
luminance of a pixel, and𝐶𝑏 and𝐶𝑟 represent its color information,
called chrominance. Grayscale images have the 𝑌 channel only.
Version 8d of libjpeg introduces the option to store 𝑅𝐺𝐵 channels
directly in a JPEG image, called RGB JPEG.

Chroma Subsampling. Since the human eye is more sensitive to
changes in brightness than to changes in color, compression can
be increased by storing chrominance values at lower resolution.
This is achieved by combining larger quantization factors with the
option to reduce the resolution of the chrominance channels prior
to the block-wise DCT. The reduction in resolution is controlled
by the subsampling factor, for which different notations exist. Let
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Figure 2: Timeline of libjpeg versions and forks between 1998 and January 2022

𝐽 :𝑎:𝑏 denote that non-overlapping areas of 𝐽 × 2 pixels (width ×
height) of the luminance channel are supported with 𝐽 × 2 or fewer
pixels of the chrominance channels, where 𝑎 defines the number
of columns and 𝑏 decides if the second row has its own chroma
information (𝑏 = 𝑎) or not (𝑏 = 0). For example, 4:4:4 denote no
chroma subsampling. And 4:2:0, the most common subsampling,
denotes that every 2× 2 area of the luminance channel is associated
with one pixel in each chrominance channel. On the level of JPEG
blocks, four luminance blocks together with one chrominance block
per channel form a 16 × 16 macro-block.

Using subsampling for compression implies upsampling during
decompression, but the methods can differ. The “simple” subsam-
plingmethod computes the average of a source pixels covered by the
output pixel. A more sophisticated method uses bilinear interpola-
tion of input pixels, where nearby chrominance pixels are weighted
by proximity. Libjpeg calls this “fancy downsampling” for compres-
sion and “fancy upsampling” for decompression. From version 7
onward, spatial chroma sub- and upsampling are replaced by DCT
scaling. This method applies the DCT to macro-blocks and drops,
respectively fills with zeros, the high-frequency subbands [7, 26].

DCT Method. Libjpeg implements three DCT methods for com-
pression and inverse DCT for decompression, namely ifast, islow,
and float. They differ in the data type of intermediate results, speed,
and output quality. All methods use FDCT. The prefix F denotes
the “fast” divide-and-conquer algorithm found in textbooks [30].

Quality. The quantization factors regulating the information loss
are stored in quantization matrices. In principle, they can be chosen
arbitrarily, but JPEG defines a scalar quality factor (QF) in the range
between 1 and 100. Each integer indexes a pair of quantization
matrices for luminance and chrominance, respectively. A QF of 100
sets all elements to 1, resulting in the best achievable quality.

Some implementations, most notably Adobe and ImageMagick,
use a custom quality scale and the resulting JPEGs can be identified
by their “non-standard” quantization matrices [25].

3 EXPERIMENTS
We set up and run a series of experiments to compare all libjpeg
versions since 1998 up to 9e and the recent version 2.1.0 of libjpeg–
turbo. We compare differences between the implementations for
compression (Section 3.1) and decompression (Section 3.2) inde-
pendently. To facilitate the comparison of the different versions we
first generate outputs using chosen default parameter settings and

call them baseline results. We subsequently explore the effect of
parameter settings as well as selected image properties (Section 3.3).
The code for our experiments is available on GitHub.1 It uses our
Python package that allows users to select the libjpeg version.

We use the datasets ALASKA2 [6] for color, and BOSSBase [2]
for grayscale images. The never-compressed images are cropped to
512 × 512 (BOSSBase) and 256 × 256 (ALASKA2) pixels. We sample
1, 000 images from each database.

We design compression and decompression experiments for each
parameter, described in Section 2.2, as illustrated in Figure 3 and 5,
respectively. For the compression experiments, we change the value
of the investigated parameter systematically within a specified do-
main and compare the outputs after compressing with each version
on the level of DCT coefficients. For the decompression experiments,
we first compress an image with a fixed default version and then
decompress it with all versions while controlling the parameters.
Again, we compare the outputs generated by the different versions,
however now in the spatial domain. We run all experiments using
versions 6b, 7, and 9e as fixed default for compression and observe
equivalent decompression results. This confirms that our choice of
a specific version for compression does not affect the results.

compressRGB DCT
parametersversion

Figure 3: System model for the compression experiments

When comparing outputs, we flag a difference if at least one DCT
coefficient (for compression) or pixel value (for decompression) in
the output differs between two versions. To define a baseline for
comparisons we use the following default parameter values: QF 75,
DCT method islow, and fancy upsampling with factor 4:2:0.

Considering that saturated areas may be processed differently
as the truncation to the value range involves a non-linear opera-
tion [3, 29], we rerun all our experiments on a set of special images.
The set includes synthetic checkerboard images (both alighted and
unaligned with JPEG blocks) as well as on the two images with the
highest ratio of 0s (dark saturation) and 255s (white saturation) in
each dataset.2 We find no peculiarity for the special images.

1https://github.com/uibk-uncover/KnowYourLibrary
2The most saturated images are “10343.tif” (50.1 % dark saturation) and “05887.tif”
(39.7 % white saturation) in ALASKA2, and “6155_6_1.png” (38.2 % dark saturation)
and “6900_1_3.png” (100 % white saturation) in BOSSBase.

https://github.com/uibk-uncover/KnowYourLibrary
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Figure 4: Differences between versions for compression

3.1 Compression
To measure the influence of the library version on compression,
we first carry out baseline experiments with default parameters
for every version. We then compare the results to those generated
using different parameter values for chroma subsampling (simple
and fancy subsampling and different subsampling factors), different
DCT methods, and QFs. Figure 4 reports all mismatches observed.

Baseline. The compression with default parameters produces
three sets of versions producing identical outputs: (1) libjpeg 6b and
libjpeg–turbo, (2) libjpeg 7 up to 9d, and (3) libjpeg 9e. For grayscale
images, all versions produce the same results. The observations
indicate changes in libjpeg 7 and 9e regarding the processing of
color. Hence, the next experiment analyses the version’s influence
on color subsampling.

Color Subsampling. We test all subsampling factors in this list,

( 4:4:4, 4:4:0, 4:2:2, 4:2:0, 4:1:1, 4:1:0, 3:3:0, 3:1:1, 3:1:0, 2:1:0 ),

and systematically vary between simple and fancy mode. To test
uncommon but permitted inputs, we specify some of the factors in
several equivalent ways, for example 4:4:4 (no subsampling) can also
be stated as 3:3:3. The libjpeg API allows for even more redundant
encoding as the subsampling is specified in six parameters. Finally,
we compress images with subsampling in only one of the two
chroma channels while keeping the other one at full resolution.

We find that if no subsampling or any kind of simple subsampling
is used, the distinction between (1) 6b and turbo and (2) 7 to 9d
disappears. If fancy subsampling is selected, this is also the case
whenever no subsampling factor is a power of two. For example,
4:4:4 (no subsampling) and 3:1:1 (no power of two) produces outputs
where no distinction between the versions 6b to 9d including turbo
can be made. We denote this as 3:∗:∗ in Figure 4.

We suspect that this is caused by a fallback function for DCT
scaling introduced in version 7, which exclusively supports powers
of two. In other words, if the subsampling mode is fancy and any
of the chroma channels is subsampled with a power of two, DCT
scaling becomes effective, leading to differences in the outputs
produced with (1) version 6b and turbo and (2) 7 to 9e. None of our
exotic calls refutes this explanation.

DCT Method. We explore the influence of the libjpeg version on
compression results produced with all three DCT methods.

We find that changing DCT methods results in the same differ-
ences as seen in the baseline; for grayscale and color, both with and

without chroma subsampling. Note that the three DCT methods
produce significantly different outputs for any fixed version.

Quality. We run our experiments for all QFs from 50 to 100. We
observe baseline results (QF 75) for all QFs except 64, 67, 70, 73, 76,
78, 79, 81, 82, 84, 85, and 87–100. In those cases, versions 7 to 9d
produce identical outputs as 9e. The differences are caused by the
change of the chrominance DC quantization factor in version 9e.

3.2 Decompression
We start with default parameters for each version to obtain our
baseline result for decompression. By changing different parameters
we relate to the baseline and report the sets of versions with equal
output. The parameters under investigation are chroma upsampling
(simple scaling and fancy upsampling) for a number of factors, and
the DCTmethod. The observed mismatches are reported in Figure 6.

compress decompressRGB JPEG RGB

quality,
subsampling factor

fixed version
DCT method,
simple vs fancyversion

Figure 5: System model for the decompression experiments

Baseline. When decompressing with default parameters we see
three sets of versions: (1) libjpeg 6b together with libjpeg–turbo, (2)
libjpeg 7 to 9, and (3) libjpeg 9a and later. Observe that the sets (2)
and (3) differ from those produced by the baseline experiments for
compression. No mismatches are observed for grayscale.

Color Upsampling. The experiments with color upsampling are
carried out for the same subsampling factors as in the compression
experiments (Sect. 3.1) for simple and fancy upsampling.

We find that if no subsampling or any kind of simple upsampling
is used, the versions (1) 6b and turbo and (2) version 7 to 9 produce
identical outputs. If fancy upsampling is selected, then whenever
no subsampling factor is a power of two, we see identical results for
the described sets (1) and (2). For example, 4:4:4 (no subsampling)
and 3:1:1 (no power of two) produces outputs where no distinction
between the versions 6b to 9 including turbo can bemade.While this
pretty much resembles the behavior observed in the compression
experiments, we find another difference in decompression: if any of
the chroma channels has been subsampled with vertical factor 2 and
horizontal 1 (4:4:0), libjpeg 6b and libjpeg–turbo diverge. We can
attribute the latter to an optimization introduced in libjpeg–turbo,
implemented in the function h1v2_fancy_upsample.

DCT Method. Since the DCT method may interact with DCT
scaling, we test all three DCT methods for color images with and
without chroma subsampling (4:2:0), and grayscale for complete-
ness. Modifying the baseline to the DCT method ifast produces
four sets: (1) 6b and turbo, (2) versions 7 to 9, (3) 9a, and (4) 9b to 9e.
The DCT method float partitions the sets (1) and (2) and produces a
total of 6 sets (see Figure 6). Switching to simple or no upsampling
reduces the number of sets for all three DCT methods, however in
different ways. A commonality is that version 6b becomes identical
to version 7 (see Fig. 6). Unexpectedly, we do observe differences
for grayscale images when using the DCT methods ifast or float.
The DCT method ifast produces two sets: (1) 6b to 9a and (2) 9b to
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Figure 6: Differences between versions for decompression

9e. For the DCT method float we observe unusual sets: (1) 6b with
7 to 8, (2) turbo with 8a to 9a, and (3) 9b to 9e. This suggests that
libjpeg–turbo adopted some changes from versions later than 6b. In
all other experiments we observe turbo generating either identical
results as 6b or forming a singleton.

Quality. To test the influence of the QF on decompression, we
compress color and grayscale images with default parameters and
vary the QF between 50 and 100. We observe the same pattern as
seen for the baseline experiment (QF 75). The compression quality
does not seem to impact version differences for decompression.

3.3 Unaligned Input Dimensions
Recall that DCT transforms block of 8 × 8 pixels. When image
dimensions are not multiples of 8, blocks on the edges are partially
outside of the image. Such cases are not standardized and thus seem
prone to potential version mismatches.

To generate different edge blocks, we crop the input images to a
height and width of various modulo of 8 before compression. For
experiments without chroma subsampling we do so by adding the
offsets 1, 2, 4, 7 and 8 in both directions to the input dimensions
before cropping the images from the center. An 8 × 8 block in the
chroma component at 4:2:0 subsampling corresponds to a 16 × 16
macro-block in the original image. For the experiments with chroma
subsampling we therefore add the offsets 1, 2, 3, 7, 8, 9, 15, and 16
before cropping the images. Contrary to our hypothesis, we do not
find any new mismatches for compression or decompression.

Table 2: Magnitude of changes in compression

Mismatching Share of mismatching
Scenario images DCT coefficients (log10)

(of 1000) 𝑞5 median 𝑞95

Between versions
6b/turbo vs 7–9d 995 −3.61 −3.04 −2.51
6b/turbo vs 9e 995 −2.85 −2.34 −2.13
7–9d vs 9e 993 −3.00 −2.45 −2.28

Within one version (9e)
DCT islow vs ifast 1000 −2.40 −2.15 −2.01
DCT islow vs float 1000 −3.10 −2.80 −2.68
QF75 vs 90 1000 −0.99 −0.63 −0.36
QF90 vs 95 1000 −0.83 −0.52 −0.28
QF95 vs 100 1000 −0.37 −0.14 −0.07

3.4 Magnitude of Differences
To assess the effect of differences between libjpeg versions on ap-
plications in multimedia security, we quantify the differences in
the baseline case and compare them to parameter changes for the
same version, whose effects on applications are better understood.

Table 2 shows the results for compression. Between all three
sets, over 99.3 % of the 1,000 test images differ in at least one DCT
coefficient. This is close to the 100 % response to parameter changes
within version 9e. To get a better idea of the magnitude of changes
within compressed images, we calculate the share of all mismatch-
ing quantized DCT coefficients per image and report robust statis-
tics of the distribution over all images, namely quantiles 𝑞5, 𝑞95, and
the median (i. e., 𝑞50). We take logs to focus on the order of magni-
tude. The fewest DCT coefficients change between version 6b/turbo
and 7–9d (about 0.1 % per median), whereas the transition to ver-
sion 9e affects about four times as many coefficients. Observe that
differences between versions are of the same magnitude as switch-
ing between DCT methods islow and float, which has been shown
influential in forensics applications [18]. For perspective, this is
much more subtle than changes in quality, which affects between 25
and 75 % of all quantized DCT coefficients for the scenarios shown
in Table 2. It requires effort to deal with this in steganalysis [23].

Table 3 shows the results for decompression. Exchanging ver-
sion 6b/turbo with any other version affects almost every image,
whereas the transition from versions 7–9 to 9a–9e leaves 73 % of the
images unchanged. This bounds the possibility to detect the libjpeg
version used to decompress from any given image. As the output
of decompression is in the spatial domain, the peak signal-to-noise
ratio (PSNR) is a suitable metric to analyze the distortion caused
by version differences. Observe that version 6b/turbo versus any
other version has a median PSNR of around 50 dB, comparable to
the distortion introduced by high quality JPEG compression. The
lower end of the range has values below 40 dB, which can become
visible. The differences between versions 7–9 and 9a–9e are tiny,
with PSNR above 80 dB. They are so small that rows one and three
in the table show identical numbers at the given precision; we con-
firmed that the underlying data varies. Comparing to parameter
changes within version 9e, we note that the version differences can
be more pronounced than changes to the DCT method, but are far
less influential than the reported changes in quality.



Table 3: Magnitude of changes in decompression

Scenario Mism. images PSNR (dB)
(of 1000) 𝑞5 median 𝑞95

Between versions
6b/turbo vs 7–9 990 39.61 49.00 59.45
7–9 vs 9a–9e 267 81.29 90.28 101.07
6b/turbo vs 9a–9e 990 39.61 49.00 59.45

Within one version (9e)
DCT islow vs ifast 998 45.38 46.13 50.07
– ” – for grayscale 997 51.25 51.30 53.08
DCT islow vs float 997 52.88 55.06 59.58
– ” – for grayscale 997 57.17 58.36 70.10
QF75 vs 90 998 26.60 34.83 43.15
QF90 vs 95 998 29.58 36.25 44.90
QF95 vs 100 998 35.91 39.21 44.90

3.5 Libjpeg–turbo on Different Architectures
The acceleration of libjpeg–turbo is based on vectorization us-
ing architecture-dependent SIMD instructions (MMX, SSE2, AVX2,
Neon, and AltiVec) [1]. This raises the question whether the out-
put of libjpeg–turbo is consistent across architectures supporting
different SIMD instruction sets. To get some indication, we run our
experiments on an AMD Ryzen 7 4700U, supporting MMX, SSE, and
AVX2, and an ARM-based Apple M1 (2020), supporting Neon. The
outputs of both architectures are identical. We ensure that libjpeg–
turbo actually uses SIMD code by comparing the execution time
with version 6b, which is the source of the libjpeg–turbo branch
and does not use any SIMD acceleration. Libjpeg–turbo compresses
significantly faster than 6b on both tested architectures.

3.6 Libjpeg Under the Hood
We confirm that JPEG compression and decompression using Mat-
lab’s imread/imwrite functions produce identical results to those
of libjpeg 6b. Sallee’s Matlab JPEG Toolbox [27] uses the system-
wide libjpeg at compile time. The pre-compiled MEX file uses ver-
sion 6b. The version does not seem to matter in its main use case
of reading DCT coefficients. All versions are identical at this level.

We briefly inspected the compression and decompression func-
tions of the Python packages PIL, matplotlib, and opencv. The first
two use libjpeg, but the version varies between systems. The com-
pression results of opencv did not match any of the libraries in our
study. This calls for caution when using these packages in forensics
or steganalysis research.

4 DISCUSSION
We can draw some lessons from our systematic comparison of
numerical differences between libjpeg versions. First, the decom-
pression functions of libjpeg have changed more often between
versions than compression functions. Second, the libjpeg version
does not seem to matter when working with grayscale images, un-
less one deviates from the default DCT method (which is rarely
reported). This means that many of the “classic” results in the
steganalysis and digital forensic literature of the 2000s—the era of
libjpeg version 6b—may still be valid. Most of them are (unduly [17])
limited to grayscale. Third, when working with color, the libjpeg

version does matter. Under certain parameter constellations, the
14 versions in our experiments produce six different outputs. This
hints at a potential vulnerability of security-related applications
implemented in forensics or steganalysis and should encourage
users and researchers to control and carefully report which JPEG
implementation was used: know your library. Future work must
establish to what extent the differences found here carry through
to forensic detectors, steganalysis, or watermarking.

This work has limitations. First, our results are limited to the
parameter and input space covered. One could consider static pro-
gram analysis to verifiably find all version differences, e. g., using
interval arithmetic [19]. Second, we only consider a single version
of libjpeg–turbo and omit mozjpeg. Forensics practitioners may
encounter all of them and call for an extension of this study to those
versions. They might also ask for a method to detect the exact com-
pression library from a given image, refining earlier attempts [4].
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