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Abstract—JPEG steganalysis seeks to detect the presence of
hidden messages in JPEG images. In some cases, additional infor-
mation is available that may aid JPEG steganalysis. One instance
is a thumbnail of the cover image, which may be acquired from
a seized device or from the image file because the steganography
software did not update the metadata. This paper studies
how a leaked cover thumbnail can aid JPEG steganalysis. We
distinguish two types of thumbnails: pre-compression thumbnails
produced from uncompressed pre-covers, and post-compression
thumbnails produced from JPEG-compressed covers. The anal-
ysis proceeds in three stages. First, we quantify the amount of
information left in the cover thumbnail. Second, we demonstrate
that post-compression cover thumbnails allow for near-perfect
steganalysis by re-creating the thumbnail. Third, we study how
an EfficientNet detector can benefit from the additional cover
information in pre-compression thumbnails.

Index Terms—steganalysis, thumbnail, side information

I. INTRODUCTION

The goal of a steganographer is to secretly send a message.
To do so, the message is embedded inside an innocuously
looking cover object, typically by modifying an existing cover.
One common type of covers are digital images. When using a
lossless format, the message can be embedded into the image
pixels. In lossy formats, such as JPEG, the message can be
embedded into the quantized discrete cosine transform (DCT)
coefficients. Adaptive embedding methods, e.g., UERD [1] or
J-UNIWARD [2], place the changes in the cover based on its
content. By contrast, non-adaptive methods, such as nsF5 [3],
spread the changes uniformly over all embeddable positions.

The goal of a steganalyst, the adversary of the steganogra-
pher, is to distinguish covers from stego objects that contain
a secret message. Steganalysis can target a steganographic
method or be blind – applicable to any method. The standard
approach to blind steganalysis involves a detector preceded
by feature extraction [4]. In recent years, neural networks
surpassed the feature-based approach in terms of performance,
at the cost of limited explainability. For example, the contri-
butions to the ALASKA2 competition [5] were dominated by
deep learning, in particular the EfficientNet architecture.

Specific circumstances may facilitate steganalysis in prac-
tice [6]–[10]. Imagine the steganalyst obtains a thumbnail
of the cover. Despite being subsampled and re-compressed,
the cover thumbnail reveals partial information about the
steganographic changes. Exploiting such information could
improve detection performance.

The cover thumbnail could be acquired from a seized device
as an outdated record in the operating system’s (OS) thumbnail

cache, which are often updated with some delay, based on user
interactions [11]. The cover thumbnail could also appear in
the stego object, e.g., by careless copying of the cover JPEG
metadata to the stego object [12]. The recent image cropping
bug aCropalypse [13] in popular software exemplifies how
parts of the file can persist after editing.

To our best knowledge, there has not been any attempt of us-
ing thumbnails to support steganalysis. This paper contributes

1) a typology of thumbnails specific to JPEG steganalysis;
2) a quantification of the advantage the steganalyst gains

by capturing the leaked cover thumbnail; and
3) empirical measurements of the improvement in detector

performance using two types of thumbnails.
It is structured as follows: Section II presents related work
in steganalysis and image forensics. Section III recalls how
image thumbnails are generated. Section IV quantifies the
amount of information in leaked cover thumbnails. Section V
describes our experiments on using the thumbnail in a detector,
and Sec. VI presents the results. Section VII discusses and
Sec. VIII concludes the paper.

II. RELATED WORK

Previous cases of side information in steganalysis are side-
channel awareness (SCA) [8], [14]–[16] and phase aware-
ness (PHA) [17]–[19]. SCA uses the distortion as an attention
map, multiplied or concatenated along the channel axis with
the main features. PHA exploits pixel dependencies in the
decompressed domain caused by the JPEG block structure.

Another line of work uses physical side information, e.g.,
the color filter array (CFA) [6], [7] or the message length [8]–
[10]. In both cases the side information is one-dimensional: the
message length is scalar, and the CFA is a category due to the
limited number of CFA configurations in practice. Compared
to these cases, a thumbnail image conveys a large amount of
information, positionally related to the main image.

In the related field of image forensics, thumbnails have
been used to detect image manipulations [20]–[22]. In digital
forensics, thumbnails were also used to efficiently scan large
data partitions [11]. To our best knowledge, no research has
studied thumbnails as side information for steganalysis so far.

III. THUMBNAIL GENERATION

A thumbnail image is a miniaturized, compressed version
of a main image, used for preview without the need to
decompress the main image. Thumbnails appear (1) in the
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Fig. 1: System model of thumbnail generation for different thumbnail types: pre-cover thumbnail t(xpre), and post-compression
cover and stego thumbnails t(y(0)) and t(y(1)), respectively.

image metadata, e.g., generated by the capturing device,1 and
(2) in OS thumbnail caches [23], where they are often updated
only lazily.

Figure 1 shows the thumbnail generation pipeline. The
thumbnail creation comprises at least image subsampling and
JPEG compression. We denote an image in the spatial domain
as x and in the DCT domain as y. Thumbnails are denoted
t(x) and t(y). Note that generating t(y) involves an additional
decompression step. An image x has N elements indexed as
x[1], x[2], etc., a thumbnail t(x) has M elements indexed
t(x)[1], t(x)[2], etc. The elements are called pixels in the
spatial domain, and coefficients in the DCT domain. Following
the conventions in [24], a stego object has a superscript y(1),
while the corresponding cover object is y(0).

The pre-cover xpre is an image in the spatial domain,
available to the steganographer, but not to the steganalyst. The
cover y(0) is a JPEG-compressed version of xpre. The stego
y(1) is constructed from y(0) by embedding at rate α.

We distinguish three types of thumbnails: stego thumbnails
t(y(1)), post-compression cover thumbnails t(y(0)), and pre-
compression cover (or pre-cover) thumbnails t(xpre). The term
cover thumbnail subsumes both post-compression and pre-
compression cover thumbnails.

a) Image subsampling: Image subsampling is defined
in Eq. 1 using 1-D notation for simplicity. The image x is
first reconstructed in the continuous domain by convolving it
with an interpolation kernel ϕ(d) [25], and then resampled
at sampling rate ξ = M

N , with grid shift 1
2 , to obtain the

subsampled image t(x):

t(x)[j] ∝
N∑
i=1

ϕ

(
jξ−1 − i− 1

2

)
x[i] . (1)

The kernel ϕ(d) is a continuous function, centered around 0,
used to interpolate values between the pixels. Practical kernels
have bounded support d ∈ [−h, h]. The common choices

1The limits imposed by JPEG metadata and the DCF standard for thumb-
nails are compared in Appendix A.

defined in Eq. 2 are the nearest, linear, or cubic kernels,

ϕ(d) =



1|d|≤ 1
2

nearest

(1− |d|)1|d|<1 linear
3
2 |d|

3 − 5
2 |d|

2 + 1 |d| ∈ [0, 1)

− 1
2 |d|

3 + 5
2 |d|

2 − 4|d|+ 2 |d| ∈ [1, 2)

0 |d| ≥ 2.

 cubic

(2)
Narrow kernel support can violate the sampling theorem

and cause aliasing. Aliasing can be mitigated with anti-
aliasing (AA) – widening the kernel support, ϕAA(d) =
ϕ(d/h)/h. The nearest kernel with anti-aliasing is also known
as the box kernel, ϕAA(d) = (bd + hc − dd − he)−11|d|≤h.
The parameter h controls the kernel width. In the box kernel,
h relates to the number of elements to average over [25], [26].

b) JPEG compression: JPEG compression of grayscale
image involves: DCT transform per 8× 8 pixel block, (lossy)
quantization, and encoding. A quality factor (QF) controls
the rate–distortion tradeoff. JPEG decompression performs the
same steps in reverse order [25].

In Fig. 1, the baseline detection task for the steganalyst is
to distinguish between y(0) and y(1). In this paper, we explore
to what extent capturing a post-compression cover thumbnail
t(y(0)) or a pre-compression cover thumbnail t(xpre) can aid
steganalysis.

IV. FEASIBILITY STUDY

This section quantifies the number of changes between
a post-compression cover thumbnail t(y(0)) and a post-
compression stego thumbnail t(y(1)), as denoted in Fig. 1.
We assume that a higher number of differences between cover
and stego thumbnails increases the advantage gained by the
steganalyst. This section omits pre-compression thumbnails,
which are compressed once, while stego thumbnails are com-
pressed twice. Hence, an evaluation of their differences would
be distorted by the second JPEG compression.

A. Measuring the information left in the thumbnail

The mismatch between the thumbnails is measured using
the change rate β [27, Ch. 4], the number of changes in
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Fig. 2: Impact of the embedding rate α on the change rate β
between cover and stego thumbnail.

the stego thumbnail per cover element,

β =
# of mismatching elements

# of cover elements
. (3)

The change rate of Eq. 3 is applicable to pixels in the spatial
domain and to coefficients in the DCT domain.

1) Dataset: We randomly choose 1 000 raw images from
the ALASKA2 dataset [5], convert them to grayscale with the
dcraw tool, and crop them to 2560×2560. 967 images large
enough to generate thumbnails using a realistic2 sampling rate
ξ are JPEG-compressed at QF75; 33 images with height or
width smaller than 2560 are discarded.

Thumbnails of size 128×128 are generated from the de-
compressed covers using textbook implementations of nearest,
bilinear, and bicubic interpolation, with and without AA, and
with subsequent JPEG compression at QF75. The sampling
rates are chosen s. t. ξ ∈ [0.05, 0.5], with emphasis on the
lower half. We add a real-world generator, ImageMagick. We
deviate from the DCF standard and use square-shaped thumb-
nails, for comparability with related work in steganalysis.

The steganography is simulated at embedding rates α ∈
{0.05, 0.10, . . . , 0.40}, using J-UNIWARD, UERD, and nsF5,
covering both adaptive and non-adaptive methods.

2) Experimental setup: The experiment has two parts,
designed to provide insight into the impact of α and ξ on
the thumbnail differences. The first part fixes the thumbnail
configuration to the nearest kernel, ξ = 0.25, no AA, and
evaluates β over different embedding methods and rates α,
with and without the final JPEG compression. This thumbnail
configuration was chosen as the simplest option to generate
thumbnails. The second part focuses on nsF5, α = 0.2, and
evaluates β over different thumbnail configurations that vary
the sampling rate ξ and the interpolation kernel, with and
without AA. The embedding method was chosen as the most
promising given the results of the first experiment.

2We assume an image resolution of 3–12 Mpx, which is 1600–4000 px
along the longer dimension, and the DCF-compliant thumbnail size 160 ×
120 px [28]. The sampling rate ranges between 0.04 and 0.10.
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Fig. 3: Impact of the sampling rate ξ and anti-aliasing (AA)
on the change rate β between compressed cover and stego
thumbnails.

For a fair comparison, all thumbnails should have the same
size regardless of the sampling rate. To maintain a constant
thumbnail size of 128× 128 while varying the sampling rate,
we crop the pre-cover as shown in Fig. 1. The lowest sampling
rate of ξ = 0.05 uses the full 2560 × 2560 pre-covers, while
higher sampling rates require pre-cover cropping.

B. Results

Figure 2 shows the result of the first experiment. The top
facet compares the thumbnails in spatial domain before the
final thumbnail compression, while the bottom facet shows the
change rate in the DCT domain. The change rate β between the
thumbnails grows linearly with increasing α. The nsF5 method
leaves more information in the thumbnail than the adaptive
methods and the margin is even bigger after compression.

Note that β after compression is lower because the compres-
sion may suppress a portion of the changes, but also because
embedding a single DCT coefficient may affect 8× 8 spatial
pixels. As a result, change rates calculated in spatial domain
are on a higher scale.

The result of the second experiment is shown in Fig. 3.
The two facets show the change rate in the DCT domain
without (top) and with anti-aliasing (AA, bottom). Without
AA, the change rate β stays approximately constant even for
small thumbnails. All interpolation methods preserve a similar
amount of changes. When AA is used, β decreases for lower
thumbnail sizes. We conclude that AA removes information
from the thumbnail. Real-world thumbnail generators, such
as ImageMagick, produce similar change rates as textbook
implementations without AA.

C. Is it feasible to improve steganalysis with thumbnails ?

Yes, in principle: even small thumbnails preserve a fair
amount of information about the stego changes, at least
without AA. A comparable amount of changes is present in
the real-world generators, e.g., ImageMagick. The information
in the thumbnail grows linearly with the message size.



V. EXPERIMENTAL SETUP

We conduct two experiments to investigate how a cover
thumbnail could aid current steganalysis methods.

The first experiment explores steganalysis with post-
compression cover thumbnails. This experiment is motivated
by the scenario where a cover thumbnail is found in the OS
thumbnail cache. In this case, the straightforward approach is
to re-compute the thumbnail from the main image and compare
it to the given thumbnail. This experiment is denoted as R, as
it assumes that the thumbnail generation is reproducible.

For steganalysis with pre-compression thumbnails, re-
computing the thumbnail is not feasible because it would re-
quire access to the pre-cover. Therefore, the second experiment
explores to what extent a learning-based detector can make
use of the cover thumbnail as additional side information.
We denote this experiment I (for irreproducible). The mo-
tivating example for this scenario is when the steganography
software carelessly copies the cover metadata including a pre-
compression thumbnail to the stego. A similar approach could
be applicable for post-compression cover thumbnails with
unknown or irreproducible pipeline too; but here we focus
on pre-compression thumbnails.

A. Dataset

The experiments use a dataset consisting of 80 005 grayscale
pre-covers of size 512×512 from the ALASKA2 dataset. Ten
images with no content were dropped. To augment the dataset,
the pre-covers are rotated by multiples of 90◦ prior to the
compression at QF75. Stego objects are created from the
covers by simulating J-UNIWARD (JUNI), UERD, and nsF5,
at rates α ∈ {0.1, 0.2, 0.4}. The thumbnails are generated
from covers for the reproducible thumbnail scenario and from
pre-covers for the irreproducible thumbnail scenario. The pre-
cover thumbnails are irreproducible because the steganalyst
does not have access to the pre-covers. We choose the con-
figuration that resulted in the highest change rate in Sec. IV:
nearest kernel, no AA, ξ = 0.25.

B. Detectors

The experiment R uses an analytical approach, i.e., without
learning. The captured thumbnail is compared to a thumbnail
reproduced from the main image. We follow the convention of
a binary hypothesis test [27, Ch. 10], implying that any mis-
match between the thumbnails is evidence for steganography.

The experiment I uses a convolutional neural net-
work (CNN) based on the architecture EfficientNet B0 (abbr.
B0), as shown in Fig. 4. All CNNs are initialized by pre-
training on ImageNet. We use the original B0 architecture
without any modifications from [29] because we favored a
larger batch size over the increased memory requirement of
the modified architecture.

The vanilla B0 shown in Fig. 4a serves as our baseline.
The thumbnail should be injected into the network in a way
to allow for positional comparison between the cover and
the thumbnail. Our detector shown in Fig. 4b upsamples the
thumbnail to the size of the image using the nearest kernel and

B0

cover

stego

(a) Baseline detector, used as
a reference.

upscale

B0

cover

stego

(b) Side-informed detector; The up-
scaled pre-cover thumbnail (green)
is appended along the channel axis
with the image (orange).

Fig. 4: Detectors based on EfficientNet-B0 used in this study.

concatenates both signals together along the channel axis. The
first (stem) layer of the side-informed detector has twice the
number of input filters. The rest of the network is unmodified.

C. Training

The CNN is trained on 60% of the dataset using the
random post-embedding horizontal and vertical flipping, and
pre-embedding rotation mentioned in Sec. V-A to reduce over-
fitting. We deliberately avoided rotation as post-embedding
augmentation to allow the CNN to capture directional traces.
Training is performed at a constant learning rate of 10−4 with
batch size 64 and dropout rate 25%. We use the cross-entropy
loss and the AdamW optimizer. To achieve convergence for
lower embedding rates, the CNN is trained using curriculum
learning, by initializing the weights from the next higher
embedding rate in the sequence 0.4→ 0.2→ 0.1.

Another 20% of the dataset is used as a validation set.
Training terminates when the validation loss has not improved
for 8 consecutive epochs. The last 20% is used as test set to
evaluate the performance without any test-time augmentation.
We ensured that the corresponding cover and stego images are
always in the same split.

D. Evaluation

Performance is reported using two metrics derived from
an estimate of the receiver operating characteristic (ROC)
curve. The ROC curve captures the dependency of type I
and II errors, via the probability of false positive PFP(τ) and
the probability of missed detection PMD(τ), on the decision
threshold τ . The metrics are the probability of error, PE =
minτ [PFP(τ) + PMD(τ)]/2, and the missed detection rate at
the false positive rate 5%, P5%FP

MD = PMD(τ)|τ s.t. PFP(τ)=5%.
While the PE measures the performance at the best empirical
τ , P5%FP

MD corresponds to the performance at a practical FP
rate [30].

VI. RESULTS

The results for the experiments R and I are presented below.
Experiment I is followed by a post-hoc study, which evaluates
the CNN’s sensitivity to various thumbnail configurations.



A. Experiment with reproducible thumbnail

Table I shows the results of experiment R. The metric P5%FP
MD

is replaced with the absolute number of missed detections
because there are no false positives. In this case, a missed de-
tection means that the stego thumbnail is identical to the cover
thumbnail. This approach achieves nearly perfect detection
even for low embedding rates. The detector is slightly better
for nsF5, compared to UERD and J-UNIWARD, because
nsF5 leaves more traces in the thumbnail, as demonstrated
by the feasibility study in Sec. IV.

TABLE I: Performance of the detector using leaked post-
compression cover thumbnails (nearest, ξ = 0.25) and assum-
ing a reproducible thumbnail generation pipeline.

Method α Missed PE

JUNI 0.4 31 / 79995 0.0002
JUNI 0.2 41 / 79995 0.0003
JUNI 0.1 60 / 79995 0.0004

nsF5 0.4 25 / 79995 0.0002
nsF5 0.2 34 / 79995 0.0002
nsF5 0.1 53 / 79995 0.0003

UERD 0.4 28 / 79995 0.0002
UERD 0.2 43 / 79995 0.0003
UERD 0.1 62 / 79995 0.0004

B. Experiment with irreproducible thumbnail

The results of experiment I are reported in Table II.
The side-informed detector consistently outperforms the base-
line across different embedding methods and rates, however at
a rather small margin. For J-UNIWARD the decrease in error
probability ∆PE is in the range of 1.3–2.1 %-pts. For UERD
it grows from about 0.5 %-pts for α = 0.4 to almost 3 %-pts
for α = 0.1. For nsF5 it fluctuates for different rates between
0.25 and 1.5 %-pts.

Sensitivity to other thumbnail configurations: The CNN
trained with one thumbnail generation pipeline is now exam-
ined for generalization to other pipelines. The performance
decrease is compared to the change rate β from Sec. IV.

Anti-aliasing, the strongest factor for β, causes only a minor
decrease within 1%-pt. The interpolation kernel, with a minor

TABLE II: Performance increase of B0 detector side-informed
with pre-cover thumbnails (nearest, ξ = 0.25).

Baseline Thumbnail

Method α PE P5%FP
MD PE P5%FP

MD ∆PE

JUNI 0.4 0.0989 0.1662 0.0813 0.1262 −0.0176
JUNI 0.2 0.2232 0.5013 0.2098 0.4616 −0.0133
JUNI 0.1 0.3511 0.7600 0.3301 0.7295 −0.0210

nsF5 0.4 0.0177 0.0051 0.0138 0.0031 −0.0039
nsF5 0.2 0.1170 0.2316 0.1031 0.1898 −0.0139
nsF5 0.1 0.2735 0.6413 0.2706 0.6465 −0.0029

UERD 0.4 0.0739 0.1012 0.0691 0.0899 −0.0048
UERD 0.2 0.1622 0.3090 0.1515 0.2907 −0.0107
UERD 0.1 0.2811 0.5746 0.2518 0.5336 −0.0293
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Fig. 5: Effect of changed sampling rate ξ of the thumbnail on
the detection error PE. The CNN was trained with ξ = 0.25.

difference in β, has almost no effect on the performance.
After training on pre-compressed cover thumbnails, the CNN
shows a minor performance drop when tested with post-
compressed cover thumbnails. The sampling rate ξ, despite
having little impact on β, has a profound impact on the
detection performance, as shown by Figure 5. Unless ξ is a
power of 1

2 , the accuracy degrades below the baseline. We
hypothesize that this degradation is because upscaling the
thumbnail with an arbitrary ξ deviates from the JPEG grid
seen during training.

Alas, the strong impact of ξ means that steganalysts in
practice may need to retrain for a specific cover and thumbnail
size of the files under investigation.

VII. DISCUSSION

Thumbnail reproduction is a powerful attack useful in
practice. However, it can only be applied to post-compression
cover thumbnails with a known and reproducible thumbnail
pipeline. Even then there are pitfalls, e.g., thumbnail pipelines
of thumbnail caches differ between Windows versions [23].
Future work could investigate whether a leaked cover thumb-
nail allows estimating the embedding rate in the main image.

The improvement in experiment I over the baseline is
small but consistent. The CNN uses the information from
the thumbnail channel, but does not seem to perform a local
comparison with the main image. A limitation of our study
is that the detector is only trained on one specific thumbnail
generation pipeline. However, the thumbnail generation can
vary between camera models [22]. We leave a further research
towards generalization to future work.

An alternative to our CNN could be training a siamese net-
work [31] on image-thumbnail pairs. Our initial experiments
with siamese networks did not lead to a confident improve-
ment. Another idea was to replace the upscaled thumbnail by
its difference with the image. The difference image could be
also used as an attention mechanism. Systematic explorations
of these directions are future work.

The experiments were limited to grayscale images, which
was chosen to prevent color components from contributing
additional side information, and to a single quality factor. A
general limitation is that capturing a leaked cover thumbnail
is a rather strong assumption.



VIII. CONCLUSION

This paper investigates to what extent a leaked cover
thumbnail aids steganalysis. Cover thumbnails can be di-
vided into pre-compression and post-compression thumbnails
based on their generation steps. For post-compression cover
thumbnails, we quantify the information left and demonstrate
that reproducing the thumbnail leads to near-perfect detection
of steganography. For pre-compression cover thumbnails, we
demonstrate how an EfficientNet detector can benefit from this
additional side information.
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APPENDIX A
JPEG THUMBNAIL

The JPEG thumbnail is carried inside Exchangeable Image
File Format (EXIF) metadata, and as such is limited by
the EXIF format. JPEG thumbnail parameters are further
defined in Design rule for Camera File system (DCF) stan-
dard [28] issued by the Camera & Image Products Associa-
tion (CIPA). The DCF standard is a guideline for compatibility,
and is not obligatory. Table III shows a comparison of EXIF
and DCF.

TABLE III: Parameters of JPEG thumbnails defined by
the EXIF format and by the DCF standard.

EXIF DCF

Format JPEG/TIFF/HEIC JPEG
Size Up to 64 kB Not specified
Resolution Any 160 × 120
Aspect ratio Any 4:3
Chroma sampling Any 4:2:2
Color space Any sRGB
No. thumbnails Multiple At most 1
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