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ABSTRACT

This paper provides a framework actuaries can use to think 

about cyber risk. We propose a differentiated view of cyber  

versus conventional risk by separating the nature of risk arrival 

from the target exposed to risk. Our review synthesizes the liter-

ature on cyber risk analysis from various disciplines, including 

computer and network engineering, economics, and actuarial 

sciences. As a result, we identify possible ways forward to 

improve rigorous modeling of cyber risk, including its driving 

factors. This is a prerequisite for establishing a deep and stable 

market for cyber risk insurance.
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Some aspects may also be relevant for underwriters, 
brokers, corporate risk and information security man-
agers, policy analysts, and academics studying related 
fields. This paper addresses topics with global scope. 
Therefore we refrain from making policy recommen-
dations that would be specific to a few jurisdictions.

2. Cyber risk

Undoubtedly, the term cyber has become a buzz-
word among marketers and policymakers, causing a 
plethora of associations but lacking a single unanimous 
definition. The application of the term cyber is vast, 
from the “cyberspace” popularized after the science 
fiction short story collection Burning Chrome (Gibson 
1987) to the establishment of the United States Cyber 
Command in 2010. The latter is a consequence of 
recognizing cyber to be the fifth domain of warfare 
next to land, sea, air, and space (Lynn 2010). What 
matters from a risk and insurance perspective is 
whether the qualifier “cyber,” for instance in cyber-
crime, is merely an exchangeable technology prefix, 
such as “electronic” (or shorthand “e”) in electronic 
commerce, or if it can meaningfully demarcate cyber 
risk as a new class of risk that requires special treat-
ment and tailored conceptual models.

2.1. Technological context

To distinguish cyber from non-cyber (or conven-
tional as a qualifier for risk and insurance), it is helpful 
to recall key characteristics of the enabling technol-
ogy. All advances in information technology result 
from progress in microchip manufacturing, chiefly 
the technical capability to densely integrate electrical 
circuits in mass production, along with the engineer-
ing tools to design circuits with millions of logical 
elements (gates) in a systematic and largely predict-
able manner. The design complexity of circuits hints 
at the first source of risk. The number of possible 
states of a few hundred gates exceeds the number of 
atoms in the known universe, and the relation between 
inputs, states, and outputs of circuits can be highly 
nonlinear. Therefore it is impractical to test and fully 

1. Introduction

In this paper we provide a framework actuaries 
can use to think about cyber risk. With the ambition 
of being fundamental, the paper tries to establish a 
distinct notion of “cyber” that can be associated with 
a set of characteristics relevant to conceptual as well 
as quantitative modeling of cyber risk. To that end, 
we identify and explain important factors that affect 
loss distributions after cyberattacks and, by exten-
sion, market participants’ decisions to offer or seek 
insurance for cyber risk. The paper reviews selected 
scholarly works that apply economic and actuarial 
concepts to the domain of cyber risk.

Understanding cyber risk is a hard problem. Stan-
dard textbooks on technical aspects of information 
security have many hundred pages in dense technical 
jargon and still cover each topic only superficially. 
Even seemingly simple security mechanisms used by 
billions of people every day are not fully understood. 
For example, according to Bonneau et al. (2012), a 
few hundred research papers address the problem of  
password security. The number of data points ana-
lyzed in these works accumulates to many millions. 
Yet the issue is far from being solved. Adding a risk 
perspective potentiates the problem space by including 
the combinatorics of technical, social, and economic 
factors. This paper provides a first step in structuring 
the field, by making it accessible to analysts trained 
in more conventional domains of risk modeling and 
highlighting the specifics of cyber risk.

Our approach is as follows. We first develop a defi-
nition of cyber risk useful for the insurance industry 
(Section 2). This involves recalling the key concepts 
of information technology and how they shape risk. 
Then we discuss the treatment of cyber risk from 
three relevant angles: cyber risk management by firms 
and organizations (Section 3), economic modeling of 
cyber risk transfer (Section 4), and actuarial model-
ing of cyber risk (Section 5). We close by discussing  
practical challenges to cyber risk insurance and prom-
ising research directions (Section 6).

The target audience of the paper comprises trained 
risk analysts and actuaries in the insurance industry. 
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cycles and consequently less time to collect actuarial 
data for a system in operation. Possibly most worrying 
is that some classes of common programming errors 
allow malicious third parties to reprogram the logic 
of a device. As many devices are overequipped for 
their purpose, the existence of hidden functionality is 
often hard to detect because the modified device still 
behaves as expected. We have witnessed such hostile 
takeovers in the form of computer viruses on personal 
computers and malware infections on smartphones. 
The Stuxnet worm (Chen 2010), as an early example 
of state-sponsored cyber warfare, highlights that 
programmable devices in industrial control systems  
are not exempt. With the proliferation of program-
mable devices in every aspect of life—typically 
referred to as the Internet of things—it is only a matter 
of time until cybercriminals enter these platforms.

The ongoing connection of programmable devices 
to networks with wired or wireless physical links 
leverages the risk to be considered by insurers mainly  
through two channels. First, compound systems con-
sisting of many interconnected microprocessors, often 
owned and controlled by different parties, exhibit 
additional design complexity. In many cases no entity 
has a global plan or view of the overall system, ren-
dering validation and prediction very hard or impos-
sible. Second, networking increases the surface for 
and reach of malicious attacks. While modifying 
the software of standalone devices requires physical 
proximity at least once in the life cycle (including the 
supply chain), networked devices, if not sufficiently 
secured, can be reprogrammed remotely from any 
other device in the network. Consequently, devices 
connected to the Internet, an internetwork designed 
for routing data packets globally, are in principle 
exposed to threats from any other person with access 
to the Internet.

Networked systems further complicate risk analysis 
because insurers are rarely in the position of insur-
ing a network as a whole. Instead, different parts of 
the network (nodes) are operated by autonomous 
decision makers (agents), each with different inter-
ests (utility functions), information sets (information 

predict the behavior of arbitrary circuits built with 
current technology even if their design is known.1

Microchip production is characterized by substan-
tial economies of scale. Creating the tool (a set of 
masks) to produce the first batch of a circuit is very 
expensive; the cost for every following batch is negli-
gible compared to the upfront cost. The industry has 
adapted to this cost structure. It mainly produces gen-
eral purpose circuits, programmable to control many 
different applications. This highlights the crucial role 
of software in determining the behavior of most elec-
tronic devices. Take for instance electronic elevator 
control units. In the 1970s, these devices were built 
solely for this purpose and designed with exactly 
the components needed to realize the required logic. 
The resulting circuits were complicated, but it was 
possible for a trained expert to understand the sys-
tem completely. The design complexity still allowed 
for analysis of error sources in case of incidents and 
possibly inference about causes and effects. Under-
standing these relations is essential for risk analysis 
and the attribution of losses. Modern control units  
are built from general purpose microprocessors, which 
densely integrate zillions of electronic components. 
The behavior of such systems is defined by customized 
software that implements the required logic and often 
uses only a small fraction of the functionality offered 
by the general purpose component. The resulting  
systems exhibit high design complexity. This increases 
the risk that design flaws remain unnoticed and raises 
the effort of proactive risk research as well as the 
cost of forensic analysis after incidents. Both add to  
uncertainty and raise the transaction costs of risk 
transfer arrangements.

These are not the only issues software systems 
cause from an insurance perspective. It is easier to 
revise software than to upgrade hardware (Shapiro 
and Varian 1998). This leads to short product life 

1It is possible to design circuits and software with automated verification 
in mind. This technology is orders of magnitude more expensive than 
common personal computer or smartphone technology and thus exclu-
sively used for critical applications, such as passenger aircraft or nuclear 
power plants.
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conventional risk inspired by the management litera-
ture (e.g., Kaplan and Garrick 1981):

=

×

Risk Probability of a loss event

Magnitude of the loss. (1)

This definition of risk has many deficits. It coerces 
a complicated loss distribution to a single Bernoulli 
trial, is agnostic about the time dimension, and does 
not differentiate between individual and aggregated 
losses caused by a single loss event. Yet this defini-
tion is useful to motivate a differentiation that helps 
to develop a more precise notion of cyber risk than 
commonly used. We propose to distinguish between

• risk arrival, the processes causing loss events, 
modeled in the simplest possible form as prob-
ability of a loss event in equation (1), and

• target, the assets that suffer losses, modeled as a 
fixed magnitude of loss in equation (1).

Both risk arrival and target can independently 
belong to one of the two classes: cyber or conven-

tional. We classify risk arrival as cyber if the loss 
event is primarily caused by logic (and, by extension, 
computer programs and networks) and as conven-
tional if the loss event is primarily caused by physical 
force. Likewise, we speak of a cyber target if the  
loss event predominantly devalues information assets, 
such as, for example, through destruction (data loss or 
unauthorized modification), loss of exclusivity (data 
breach), and consequences thereof (data abuse). A 
conventional target incurs losses by the destruction 
or unavailability of physical assets. Borderline cases 
exist along both dimensions. However, we believe 
that this distinction is useful—for instance, because 
insurers can implement a modular approach with divi-
sion of labor: one team specializes on the specifics 
of cyber at the risk arrival process; another team of 
experts valuates cyber assets and quantifies losses. 
With this distinction, we can precisely classify all 
cyber incidents proposed in Box 1.

We have collected alternative definitions of cyber 
risk to cross-check our definition. Most authors agree 

asymmetries), and expectations. They make inde-
pendent economic decisions while being connected 
by a common factor that affects the joint outcome 
(externalities). Part of the agents’ decision space is  
whether to invest in security (risk mitigation) or buy  
insurance (risk transfer).2 The economic terms in 
parentheses suggest that cyber risk analysis is as much 
about understanding and modeling the technology as 
it is about understanding and modeling the economic 
incentives of the involved agents (Anderson and 
Moore 2006).

But technological advances also yield new opportu-
nities for insurers. This generation is about to witness 
a digital revolution because the very same technol-
ogy opens a large space for innovation, often with 
the potential of unleashing unprecedented economic 
growth (e.g., Brynjolfsson and Hitt 2003). To con-
tinue the previous example, the microprocessor  
powering a digital elevator control has spare capacity  
to solve more complicated logic. For instance, it could 
be programmed to predict demand or to coordinate 
with a second elevator in the same building—functions 
that are typically marketed with the keyword smart. 
Other examples of recent innovations, such as autono-
mous vehicles, would not be possible without micro-
processors and networks that supply relevant data on 
request (e.g., traffic information). As a result of these  
and similar developments across many industrial sec-
tors, businesses, households, and governments increas-
ingly depend on information technology in numerous 
ways (Brynjolfsson, Hitt, and Yang 2002). However, 
what is a center of value creation turns into a loss center 
at the moment the technology fails to serve its purpose. 
This allows insurers to offer coverage for technology 
and assets that depend on it.

2.2. Defining cyber risk

We have used the term risk informally in the  
previous section. For our definition of cyber risk,  
it is convenient to start with a high-level notion of 

2The canonical risk management instruments further include risk avoidance 
and risk acceptance.
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2.3. Insuring cyber risk

Cyber insurance is a vehicle for cyber risk transfer. 
In exchange for a defined premium and for a defined 
period of time, the insurer contractually agrees to 
financially compensate potential losses incurred 
by the insured through the realization of cyber risk. 
Like in conventional insurance, losses may comprise 
primary and secondary losses (the sum of which is 
referred to as recovery cost) and the indemnity may 
include first-party as well as third-party losses for 
which the insured is held liable (Anderson et al. 
2008, 82). Box 2 summarizes the state of the cyber 
insurance market at the time of writing.

Using the definition of cyber risk from Section 2.2, 
we differentiate between three forms of cyber insur-
ance as illustrated in Figure 1. The figure tabulates 
the domains of risk arrival in rows and the domains 
of the target in columns. Conventional (non-life) 

that the involvement of networked computers is an 
essential element (cf. Öğüt, Raghunathan, and Menon 
2011; Böhme and Schwartz 2010). Among the more 
specific definitions, we observe that some emphasize 
the cyber element in the arrival process (cf. Anderson 
et al. 2008; Mukhopadhyay et al. 2013; Stoneburner, 
Goguen, and Feringa 2002), whereas others focus 
on cyber targets (cf. Biener, Eling, and Wirfs 2015; 
Cebula, Popeck, and Young 2010; ISO/IEC 2014; 
Eling and Schnell 2016). This observation confirms 
our belief that a unified definition should include both 
aspects and weigh them equally.

Our approach is compatible with conventions in the 
literature to classify cybercrimes by the role of com-
puters and networks in criminal acts (cf. Goodman 
1997; Alkaabi et al. 2011). Computers and networks 
can be targets, facilitating tools, or incidental aspects  
of crimes. The third category is dropped in recent 
definitions of cybercrime since the ubiquity of the 
Internet makes computer networks an incidental aspect 
of almost any crime.

We have also considered alternative distinctions, 
such as the difference between tangible and intangible 
losses or the difference between random failures and 
malicious attacks. As these attributes are known for 
conventional insurance and do not characterize the 
specifics of cyber risk, we consider them as concep-
tually orthogonal to our distinction by the domain of 
risk arrival and target.

Box 1. Classification of cyber incidents Box 2. State of the cyber insurance market

The size of the global cyber insurance market is hard to 
estimate as insurers do not share detailed information on 
premiums and claims. Some industry reports give an  
impression of the state of the market in 2015 and 2016:

•  AGCS (2015): Gross written premiums estimated at  
$2 billion.

•  Betterley (2016): Gross written premiums estimated  
at $3.25 billion.

•  NetDiligence (2015): Total claim payouts estimated  
at $1.5 billion.

According to AGCS (2015), the U.S. market accounts for the 
majority of the gross written premiums. The European market 
is expected to catch up, driven by new breach notification 
laws that may incentivize incident reporting. To put the 
premiums into context: NetDiligence (2015) reports a total 
claim payout of $75.5 million based on 132 claims, which 
constitute approximately 5% of all claims.

Example 1 Ransomware encrypts clients and servers used  
by the software development team. All work carried out since 
the last backup is lost.

In this example we have cyber risk arrival and a cyber target.

Example 2 An earthquake destroys a data center.

In this example we have conventional risk arrival and a cyber  
target.

Example 3 A distributed denial-of-service attack against a 
major airport interrupts and delays air traffic in a geographic 
region.

In this example we have cyber risk arrival and a conventional 
target.

Figure 1. A classification of cyber risk insurance
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exclusions will be defined more narrowly—such as, 
for instance, specifically naming acts of cyber warfare 
or cyberterrorism—and combined with a tight limit 
on the order of $50 million for incidental cyber risk 
not belonging to the specified categories. This also 
limits the exposure if an act of cyber warfare cannot 
be attributed unanimously to a nation state (Clarke and 
Knake 2012), a situation experienced with the Sony 
hack in 2014.3

Another line of business is cyber insurance of 
third-party risk. In that case policyholders are held 
liable for monetary amounts that can be passed on to 
the insurer. This partly explains the success of insur-
ance policies covering losses from breach-reporting 
obligations (Romanosky 2013; Kirkpatrick 2015; 
Laube and Böhme 2016; Bandyopadhyay, Mookerjee, 
and Rao 2009). Corresponding legislation is high on 
the policy agenda around the globe in order to reduce 
underreporting of cyberattacks. However, important 
limitations remain. Most policies cover only parts 
of the costs, define rather tight limits on each loss 
source, and exclude losses of reputation and sub-
sequent negative stock market reactions, which are 
hardly measurable (Acquisti, Friedman, and Telang 
2006). Moreover, insuring against regulatory fines 
is prohibited in many jurisdictions (Gatzlaff 2012). 
If quantifying losses ex post is difficult, insurer and 
policyholder may agree on a fixed indemnity ex ante, 
provided that the agreement complies with the codifi-
cation of the indemnity principle in the jurisdictions 
concerned.4

3. Cyber risk management

To insure cyber risks, insurers must be able to 
identify essential risk factors and understand the 
decision of firms to seek insurance for specific 

insurance is located in the top left area. Cyber insur-
ance in a narrow sense is located in the bottom right 
area. This is what most authors of early contem-
plations of cyber insurance presumably had in mind 
(e.g., Medvinsky, Lai, and Neuman 1994; Schneier 
2001; Grzebiela 2002; Baer 2003).

Several reasons explain why the market for cyber 
insurance in a narrow sense did not evolve as pre-
dicted, chiefly a lack of demand and a lack of claims 
in the 1990s. The lack of claims was interpreted as 
an indication of cumulated risk. This spurred fears 
of a “cyber hurricane,” which led reinsurers to stop 
covering cyber risk in the early 2000s (Böhme and 
Schwartz 2010). Although the market did not evolve 
as predicted, nascent markets for cyber-threat and 
cyber-asset insurance exist.

The increasing demand for cyber-asset insurance, 
in the top right corner of Figure 1, is a consequence of 
the growing dependence of organizations on informa-
tion systems and the data processed therein. Although 
some industry experts initially saw difficulties in writ-
ing precise policies for the intangible losses of informa-
tion assets, the progress made in valuating intangible 
assets in the finance and accounting disciplines has 
accommodated this concern. A major development to 
this end is the uptake of marketplaces for information 
technology services (e.g., in various cloud computing 
models) and for business data (Balazinska, Howe, and 
Suciu 2011; WEF 2011). Both market types generate 
price information useful for estimating the monetary 
value of (lost) in-house infrastructure or databases. 
Another avenue for the insurance industry to get in 
touch with cyber risk is the bottom left corner of 
Figure 1, provisionally termed cyber-threat insur-
ance. Although cyberattacks are commonly excluded 
from property or liability insurance, insurers and 
reinsurers begin to realize that they might be exposed 
to cyber threats indirectly through business inter-
ruption policies. Networked information technology 
has become so vital, in particular for operations and 
the supply chain, that computer networks are an inci-
dental aspect of almost every business interruption. 
Policies with explicit exclusions of cyber will there-
fore become harder to sell. We observe a trend that 

3For further details on the hack at Sony Pictures, see www.washington  
post.com/news/the-switch/wp/2014/12/18/the-sony-pictures-hack- 
explained/.
4The principle of indemnity for non–life insurance states that insureds 
must not profit from the occurrence of a loss event (cf. Mehr and Cammack 
1972). Hence, an upper bound for the compensation is the actual loss 
incurred.
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The conservative assumption that attackers always 
choose the weakest link has almost become a mantra  
in security trainings. A more precise model is to 
broadly classify attack strategies by their relation 
to victims (Herley 2014). Opportunistic attackers do 
not care about whom they attack. They standardize 
attack techniques to enjoy economies of scale when 
hitting several targets, of which only a small fraction 
gets victimized. Unsolicited mass e-mail (spam) is 
an example for this strategy. By contrast, targeted 
attacks focus on a specific victim and customize the 
attack method. They often involve several iterations 
of information gathering, with the aim to maximize 
the success probability against a carefully selected 
target. This strategy pays off for high-value targets, 
such as in extortion and industrial espionage. An 
important implication for risk analysis is that model-
ing threats as probabilistic is more appropriate for 
opportunistic attackers than for targeted attacks. More 
adequate analytical tools for the latter are worst-case 
approximations and game theory.

3.1.2. Vulnerabilities
Not every threat realizes a risk. Threats require 

vulnerabilities in the target system to become success-
ful attacks. To continue the examples from above, the 
malformed network packet is harmful only if the soft-
ware processing the data packet enters an undefined 
state that allows the attacker to take over control.6 
Such vulnerabilities emerge from common program-
ming mistakes, which are hard to be fully avoided in 
the software development process. Likewise, the social 
engineering attempt is successful only if the victim is 
tricked into sharing credentials with unauthorized 
parties. With respect to Bandyopadhyay, Mookerjee,  
and Rao (2009), we may distinguish between symp-
tomatic and systemic vulnerabilities. The former affect 
only a single firm (e.g., because it uses custom soft-
ware or runs an erroneous configuration) whereas 
the latter exists in many firms (e.g., when standard 

risks.5 To provide a fundamental background, this 
section describes risk factors using the typical chain 
of causality from cyber threats to financial losses, and 
recollects selected aspects of how firms implement 
information security in practice.

3.1. Risk factors

We conceptualize a cascade model of cyber risk 
arrival, depicted in Figure 2, to organize five classes 
of risk factors: threats, vulnerabilities, controls, assets, 
and impacts. Our model is tailored to the scope of 
this article. For a more comprehensive path model, 
see Ransbotham and Mitra (2009).

3.1.1. Threats
Threats subsume accidental physical or logical 

errors and intentional action by malicious attackers.  
Our model defines threats as the root causes of 
loss events, although it is possible in principle to 
dig deeper. As cybercrime became a profit-driven 
industry in the early 2000s (Anderson et al. 2008), 
scholars have started to analyze the motivations of 
attackers drawing on criminology (Cressey 1953) 
or the economics of crime (Becker 1974). Attackers 
use various methods including technical means, such 
as malformed network packets, nontechnical scams, 
such as social engineering to obtain access creden-
tials, or a combination of both.

5On terminology: we use firms as shorthand for professionally managed 
organizations in the private or public sector exposed to cyber risk. Firms 
appear on the demand side of insurance markets. Policyholders are firms 
who have acquired coverage from insurers. Vendors supply information 
technology and software to firms.

...

T4
T3
T2
T1
T0

Threats

...

Vulnerabilities

...

Controls

...
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...

Impacts

Node

Architecture

Attacks

Figure 2. Cascade model of cyber risk arrival

6In most cases, other parts of the data packet contain instructions that 
reprogram the software.
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Mishra, and Raghunathan 2004). Regarding preven-
tive controls, most people think of add-ons, such as 
network packet filters or antivirus software. However, 
structural changes, such as dedicated networks for 
critical data disconnected by “air gaps,” are preven-
tive controls, too. All controls cause costs that firms 
must weigh against the expected benefit in terms of  
prevented losses. Many scholars have studied this 
decision problem through the lens of investment 
theory (cf. Hoo 2002; Gordon and Loeb 2002; Su 
2006; Böhme 2010). The management of controls 
often requires strategic decisions, such as prescribing 
minimum access rights to information or specifying 
a patch strategy. In the latter case firms face a trade-
off between fast rollout of software updates to close 
known vulnerabilities and the risk that barely tested 
patches have unanticipated side-effects or break criti-
cal business processes (Beattie et al. 2002; Ioannidis, 
Pym, and Williams 2012).

All types of controls are relevant for risk analysis. 
Detective controls improve information and provide 
a more direct access to data on the risk arrival process 
than counting (aggregated) losses. Preventive controls 
mitigate the risk of specific threats.

3.1.4. Assets
The interaction between threats, vulnerabilities, 

and controls determines the success of attacks. Attacks 
turn into incidents if they hit critical assets. It is not 
necessary that the asset is damaged or destroyed;  
a customer database leaked to outsiders may be as 
painful as losing it entirely. In general, any undesired 
breach of a canonical protection goal (confidential-
ity, integrity, availability) is considered a security 
incident. Including assets as an individual risk factor 
is important because firms may use similar technology 
to secure assets of very different value and sensitivity.  
To illustrate this, recall that the technology behind 
secure Internet connections, the HTTPS protocol, 
does not substantially differ between online banks and 
well-administered websites of online pizza shops.7

software is vulnerable or a default password has not 
been changed).

Technical vulnerabilities matter for risk analysis 
in two ways. First, systemic vulnerabilities expose 
many targets to the same threat. With the ability to 
scale attacks by automating them on programmable 
devices and using networks as propagation vectors 
(cf. Section 2.1), many firms are at risk of suffering 
losses at the same time. This correlation between 
risks leads to fatter tails of the cumulated loss dis-
tribution and may hamper insurability (Böhme and 
Kataria 2006). Second, information about vulner-
abilities is notoriously incomplete, leading to a race 
for information between attackers and defenders 
(Ransbotham, Mitra, and Ramsey 2012). There is 
some controversy about the right regime of distribut-
ing vulnerability information between stakeholders. 
Some consider vulnerabilities a strategic asset for 
national security (Moore, Friedman, and Procaccia 
2010), others a tradable information good (Böhme 
2006). The distribution regime affects the vulnerabil-
ity discovery process by setting incentives for security  
researchers. It may also affect vendors’ efforts to 
produce software with fewer vulnerabilities and dis-
tribute patches. In practice, many disclosure regimes 
coexist, with underground markets on one end of the 
spectrum and organizations committed to respon-
sible disclosure on the other end (Miller 2007; Arora, 
Telang, and Xu 2008; Zhao, Grossklags, and Liu 
2015). Given the decisive role of vulnerability infor-
mation, the insurance industry will likely take part in 
the vulnerability ecosystem when it covers substantial 
amounts of cyber risk.

3.1.3. Controls
Not every pair of threat and vulnerability leads to 

a successful attack. Firms can place technical and  
nontechnical controls to mitigate cyber risks. Aware-
ness campaigns and trainings for employees are 
examples of nontechnical means. Technical controls 
can be detective controls, which indicate the realization 
of threats, possibly trigger alarms, and require reac-
tion, or preventive controls, which proactively shield 
specific vulnerabilities from threats (cf. Cavusoglu, 

7One may still hope that the bank has better processes and hires more 
qualified staff to look after its security.
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supplied by external vendors. With high concentration 
in software markets and the aim for standardization 
and interoperability, many firms have little choice  
about this part of their architecture (cf. Carr 2003). 
Similarly, the type and value of assets largely depend 
on the firm’s business, size, and level of technology  
adoption. By contrast, controls are largely in the 
responsibility of individual firms. Therefore risk 
analysis must consider security investments as a 
relevant determinant of cyber risk. Because firms 
decide strategically on their security investment, 
insurers need to understand firms’ incentives in order 
to prevent adverse selection and moral hazard (see 
Sections 4.3.1 and 4.3.2 below).

Firms cannot always control the impacts of a 
successful attack. While plaintext passwords in  
the example above could have been avoided with the 
right controls, it is easy to find examples where the 
impact is driven exogenously. A breach may lead to 
more adverse public reaction if a firm is the first or 
the only one affected in an industry. Postbreach crisis 
communication and incident response may matter 
a lot. For example, an industry report estimates the 
cost of data breaches per record between a few cents 
and $1.6 million (NetDiligence 2016). The orders-
of-magnitude difference hints at the imponderables 
with this type of risk. A particular challenge for model-
ing the impact of privacy breaches is that sensitive 
information often results from joining leaked records 
with other public or proprietary databases available at 
the time of the breach or in the future (Sweeney 2002; 
Narayanan and Shmatikov 2008). The likelihood and 
consequences of such events are very hard to predict.

3.3. Cyber risk management in practice

From an insurance perspective it is important to 
understand how (well) firms manage cyber risks and 
where to find such information. Firms synthesize the 
canonical instruments from general risk management 
and IT security to conduct cyber risk management. 
Cyber risk management requires the definition of a 
security policy, which guides a firm’s information 
security operations. This, in turn, is centered around 

For actuaries the valuation of assets (as discussed 
in Section 2.3 in the context of cyber-threat insur-
ance) is an essential prerequisite to the estimation 
of expected losses if any of the different protection 
goals is violated.

3.1.5. Impacts
The value and criticality of affected assets influ-

ences the potential impact of an incident and thus 
the amount claimed under an insurance policy. The 
impact may exceed the asset value by orders of  
magnitude—for instance, a firm that stores customers’ 
passwords in plaintext8 may face substantial liability 
and compliance cost along with severe reputation 
damage if a breach exposes customer data to the 
public. The impact can also be just a fraction of the 
asset’s value, if an effective incident response and 
recovery prevent larger damage. Insurers may provide 
professional incident response services for their 
policyholders to reduce impacts (AGCS 2015).

3.2. Determinants of risk factors

We have introduced the cascade model in order to 
structure the factors to be considered when modeling 
cyber risk arrival and loss distributions for different 
targets. The model also allows a risk analyst to rea-
son on what drives these factors. Most experts will 
accept threats as exogenous or environmental factors 
although, in principle, policy or industry initiatives  
can try to tame the threat environment (Asghari, Ciere, 
and van Eeten 2015). In general, threats follow global 
trends in the long run, and attacker tactics in the 
short run.

By contrast, vulnerabilities, controls, and assets are 
predominantly endogenous factors—that is, firms 
can in principle control them. These three factors 
together constitute a firm’s information architecture 
(as annotated in Figure 2). However, not every firm 
can exercise direct control on all three factors. Many 
vulnerabilities originate in software or components 

8There is no benefit in storing passwords in plaintext. Best practice is 
to transform them with specialized cryptographic one-way functions 
including a different constant (“salt”) for each user account.
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4. Economic modeling

Most economic models of cyber risk insurance 
analyze whether and under what conditions markets 
for cyber risk insurance can exist. This depends on 
the properties of the loss distribution and the actions 
of all market participants involved. We adapt the 
framework of Böhme and Schwartz (2010), depicted 
in Figure 3, to structure the action space of all 
involved parties.

4.1. Framework

The framework has two natural components, 
which correspond to the demand and supply side 
of insurance markets. The specific characteristics 
of cyber risk are modeled by the component called 
network environment. The network environment is 
composed of atomic but connected elements called 
nodes. Generally, firms control nodes to extract 
utility from the network. As a side effect, they are 
exposed to risk that arrives as described by the cas-
cade model of Section 3.1. It is convenient to assume 
that each node represents exactly one cascade of 
risk factors (as annotated in Figure 2). Firms con-
trol many nodes, interconnected by physical, logical, 
and social links, such as trust relationships. The links 
between nodes are typically represented as edges of 
graph structures.

An obvious example of cyber risk dependencies 
in a network environment is the propagation of mal-
ware, which infects several networked computers 
(nodes). However, risks can also arise in the software 

the problem of managing and enforcing authorization 
decisions in a systematic and efficient manner.

Approaches to embed risk management in the 
organizational structure of firms range from a single 
centralized department to delegated officers in each 
business unit. Intermediate forms also exist. The key 
roles that enable cyber risk management are (1) the 
senior management, approving an organization’s secu-
rity policy; (2) the chief information security officer  
(CISO), as the person in charge of a firm’s cyber 
security; and (3) security specialists (often embedded  
in IT operations), carrying out security-related tasks 
(Stoneburner, Goguen, and Feringa 2002). Issues 
may arise if the CISO does not have direct access to 
the senior management, or if a source of cyber risk is 
located outside of the officer’s area of influence.

Several standards support risk management in 
organizations. They can roughly be divided into two 
classes: top down (focusing on the risk management 
process) and bottom up (focusing on identification 
and quantification of individual risks). A prominent 
example of the former category is the ISO 27000 series 
(ISO/IEC 2014), adopted by many large firms across 
different sectors (PricewaterhouseCoopers 2016). 
The OCTAVE methodology is an example for the 
latter (Caralli et al. 2007). Moreover, industry-specific  
standards, such as the Payment Card Industry Data 
Security Standard (PCI-DSS), certify compliance with 
defined practices (PCI Security Standards Council 
2015). From an insurance perspective, standards and 
certifications of firms are indicators of good security 
practices. However, industry experts complain that 
many standards and certifications are incoherent and 
compliance with them is a weak predictor of actual 
security. For instance, the retailer Target was certi-
fied to be PCI compliant just before being hit by a 
major breach.9 Furthermore, voluntary certifications 
provide weak signals because they may suffer from 
adverse selection: less secure firms have stronger 
incentives to seek certification (Edelman 2011).

9For further information, see www.darkreading.com/risk/compliance/
target-pci-auditor-trustwave-sued-by-banks/d/d-id/1127936.

Network
environment

(nodes)

Demand side
(firms)

Supply side
(insurers)

Information structure

Organizational environment

control

utility

risk risk

Figure 3. Framework for economic models  
of markets for risk cyber insurance  
(Böhme and Schwartz 2010)
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The last component, organizational environment, 
defines general rules. It comprises all parties who can 
intervene with the cyber insurance market although 
they do not directly appear on the demand or supply  
side. In a model world where market participants 
follow rational choice, possible interventions take 
the form of adjusting incentive structures such that 
a desirable social outcome becomes more likely. An 
example is regulators’ introduction of breach notifica-
tion laws to incentivize security investments at firms.

4.2. Common assumptions

Most economic models emphasize the risk arrival 
process in a single time period short enough to neglect 
discounting. A common assumption is to model the 
loss as binary outcome: either the firm faces a loss 
of fixed size l > 0 or no loss at all. The loss amount 
l is measured on a monetary scale. This reduces the 
target dimension of cyber risk to a Bernoulli random 
variable L ~ B(1, p) • l, where B(n, p) is the binomial  
distribution parameterized by the number of con-
trolled nodes n and the probability of loss p. Values 
of n > 1 are reserved for situations where firms con-
trol multiple nodes, often in combination with vari-
ants of the binomial distribution where trials are not 
independent.

With n = 1 and l fixed,10 the only way to model 
control over the risk exposure is to let a firm’s prob-
ability of loss p depend on its risk mitigation efforts. 
This leads to a monotonically decreasing defense 

engineering process, as the security of a software 
product depends on all individual components. From 
this perspective connected nodes can model single 
points of failure due to vulnerabilities in common 
components or dependence on a single external sup-
plier, for instance, a cloud service provider. Risks 
can also propagate in systems of an interconnected 
supply chain or, from the social perspective, by sharing 
confidential information with business partners.

This list of dependence relationships is clearly not 
exhaustive and each type of relationship is character-
ized by a specific graph topology (see Figure 4). Con-
ceptually, every real-world insurance policy bundles 
the risk exposure of many nodes—typically those 
controlled by the policyholder, or a subset if exclusions 
apply. These nodes possibly maintain connections to 
nodes under the control of other firms. This assump-
tion naturally generalizes the model to a setting with 
interdependent security, a specific type of externality 
discussed later in Section 4.4.

The known issues of insurance markets related 
to information asymmetries—in particular, adverse 
selection and moral hazard—can be incorporated 
by instantiating another component of the frame-
work called information structure. Information on 
cyber risk is inherently asymmetric. The complexity 
alluded to in Section 2.1 precludes even the vendors of  
programmable components from fully predicting their 
behavior when combined in practical systems. The 
information structure bundles modeling decisions 
that affect the distribution of information (including 
remaining uncertainty) about the state of the world 
among the economic agents.

Ideosyncratic
hardware failure

Fully connected
data breach

Common factor
vulnerability in

standard software

Erdös-Rényi graph
ransomware
propagation

Figure 4. Topologies of connected nodes modeling the dependence 
in cyber risk arrival for selected threats

10Some authors normalize all monetary values to the unit of the loss, 
allowing them to define l = 1.
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where Ws is a random variable of the firm’s final 
wealth given security investment s, and E[•] is the 
expected value operator. For the simple Bernoulli 
loss model and initial wealth w, we obtain

s
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Market insurance can be modeled by allowing 
firms to buy insurance for losses up to a limit x at 
the price of a linear premium ~ • x. In the Bernoulli 
loss model and respecting the indemnity principle, it 
must hold that x ≤ l. With optional market insurance, 
firms optimize their action in the (s, x) plane:13
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Insurers can offer this policy only if they have 
complete information and all firms are homogenous. 
In this case, insurers anticipate firms’ choices and 
adjust ~ to reflect the risk given the common security 
investment s*:

D s  ( )( )π = + λ* 1 , (7)

where ~ is a loading needed to pay administra-
tive costs, the cost of safety capital, and insurer’s 
profit. A premium is called actuarially fair if ~ = 0,  
which implies full insurance (s, x) ~* = (0, l).14 It 
also highlights that insurance and security invest-
ment are substitutes in this model. In practice, 
actuarially fair premiums are only sustainable with 

function mapping a monetary security investment s 
to a probability of loss p.11 A simple defense function 
is given by

p D s s( )= = β− , (2)

where β > 0 is a parameter of security productivity.  
It controls how efficient money spent on security con-
trols can prevent threats from materializing as suc-
cessful attacks. More complicated forms of defense 
functions can be found in the seminal literature on 
information security investment (Gordon and Loeb 
2002). Most defense functions are convex, suggest-
ing an interpretation of decreasing marginal benefit 
of security investment. The rational choice paradigm 
predicts that firms maximize their expected wealth by  
choosing the security investment level s* ≤ l, which 
minimizes the sum of expected losses and the asso-
ciated cost of controls s:

s D s l s
s

( )( )= +* argmin . (3)

This equation models the optimal decision for risk 
neutral firms. Insurance markets can exist only if firms 
are risk averse, meaning that they are willing to trade 
expected wealth for reduced variance. Economists 
model risk aversion with concave utility functions12 
U~:  → , which map monetary wealth to prefer-
ence scores (Pratt 1964). Parameter ~ > 0 controls 
the strength of the risk aversion. Firms’ preferences 
are ranked by expected utility—which differs from 
the utility of the expected wealth—and the utility 
has to be computed over the total wealth including 
security investment. Risk-averse firms optimize the 
following problem:

s E U W
s

s[ ]( )( )=σ σ* argmax , (4)

11Security investment corresponds to the concept of self-protection in 
the sense of Ehrlich and Becker (1972).
12Classes of utility functions vary in whether and how the preference 
for certainty depends on initial wealth. Utility functions with the  
constant relative risk aversion property are independent of a firm’s 
initial wealth.

13Even simpler models producing the same qualitative results restrict 
one or both choice variables to two options: s ∈ {0, s}, x ∈ {0, l}. This 
simplifies the optimization problem to a comparison of cases.
14Because firms can eliminate all variance without sacrificing expected 
wealth. Marginally risk-averse decision makers prefer this situation. 
Security investment must be zero because otherwise firms could improve 
their wealth by reducing s; a move that must be anticipated by the insurer’s 
choice of ~, triggering a race to the bottom.
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bad risks will seek (disproportionally more) insur-
ance whereas good risks substitute insurance with 
security investment or risk acceptance. The result-
ing portfolio becomes a loss source for the insurer.17 
The canonical response against adverse selection is 
premium differentiation. In the best case, individual 
premiums ~i can be adjusted to the individual risk 
Di(s i*), where s i* may be anticipated. To simplify 
analytical models, D is often fixed for all firms, 
an assumption justifiable by the use of commodity 
technology (Carr 2003). This allows the insurer to 
offer a menu of bundles (sk, ~k), such that each firm i  
chooses and commits to a security investment sk in 
exchange for receiving coverage of the residual risk 
at premium ~k. In practice, security investment and 
actual security level are not perfectly aligned. There-
fore, insurers have to resort to approximations of sk 
by evaluating indicators on the firm’s technical and 
nontechnical risk management practices.

4.3.2. Moral hazard
Moral hazard occurs if the insurer cannot monitor 

policyholders’ contractual behavior. Once a firm has 
bought coverage x = l at premium ~j • x, it can profit 
from reducing its security investment to a value s < sk 
below the agreed level. If the insurer cannot observe 
the contract violation, it faces losses. Schwartz and 
Sastry (2014) note that insurers can tolerate only a 
limited share of such “malicious” policyholders in 
their portfolio.

Moral hazard can be dealt with by vigilant con-
tract monitoring, possibly involving intermediaries 
such as technical auditors. Since cyber risk analysis 
is a complex and barely standardized task, the trans-
action costs caused by contract monitoring are rather 
high and might render certain types of insurance 
uneconomical. Another way to limit moral hazard is 
to employ deductibles, which technically define an 
upper bound for x ≤ xmax < l. The deductible l − xmax 

subsidies.15 If ~ > 0, the existence of an insurance 
market (i.e., x~* > 0) depends on the strength of risk 
aversion ~ and the shape of the defense function D. 
In general, higher loadings ~ require more risk-averse 
firms (~) and less effective risk mitigation (β) for 
an insurance market to exist.

4.3. Information asymmetries

In practice, firms are not homogeneous. Each firm i 
has an individual level of initial wealth wi, risk aversion 
~i, and a defense function Di.

16 Consequently, each 
firm finds a different optimal action (si, xi) ~* from 
solving equation (6). Information asymmetries arise 
because individual actions are not easily observable.

4.3.1. Adverse selection
Adverse selection occurs before an insurance con-

tract is signed. The insurer faces the problem of finding 
the right premium ~. For all choices of ~ reasonable 
in the homogenous case, any choice of ~ in

D s D s
i

i i
i

i i ( ) ( )( ) ( )( ) ( )+ λ < π < + λmin * 1 max * 1

(8)

leads to an adverse selection problem (Rothschild 
and Stiglitz 1976). Firms can be divided in good 
risks, where ~ is high enough for the insurer to pay 
losses and profit, and bad risks, where ~ is too low 
for the individual probability of loss. Since the deci-
sion to seek insurance is made by rational firms, 

15Ruin theory predicts that if insurers collect only actuarially fair pre-
miums, they will eventually go bankrupt with certainty. Hence, a strictly 
positive loading ~ is necessary to help ensure that the insurer exists at 
the time policyholders need it. Moreover, the qualifier “fair” is a technical  
convention established in the economics literature. It does not imply a 
value statement. Other definitions coexist. For example, principle 4 of the 
Casualty Actuarial Society’s Statement of Principles Regarding Property 
and Casualty Insurance Ratemaking specifies, “A rate is reasonable and 
not excessive, inadequate, or unfairly discriminatory if it is an actuarially 
sound estimate of the expected value of all future costs associated with an 
individual risk transfer” (emphasis added).
16In principle, also the loss size l may differ between firms. We stick 
with our approach to modify the loss distribution on the risk arrival 
side only in order to keep the equations simple. A practical model for 
numerical analysis should allow for more realistic loss distributions than 
Bernoulli trials.

17Risk aversion and imperfect information on the demand side may 
counterbalance part of this problem in practice. Firms that do not know 
their risk exposure or security level or that are highly risk averse may 
stay in the pool despite being good risks in objective terms.



Variance Advancing the Science of Risk

174 CASUALTY ACTUARIAL SOCIETY VOLUME 12/ISSUE 2

4.4.1. Model and example
Taking this to the level of firms in our economic 

model, the modified defense function I with inter-
dependent security takes as arguments the investment 
of all connected firms:

p I s s g i g D si n i j j
j

n

∏ ( )( )( )( )= = − −
=

, . . . , , , 1 1 . (9)1 ,
1

In this specification, n is the number of firms and  
g is an n × n adjacency matrix of a (possibly directed) 
graph describing the first-order dependence between 
the nodes controlled by the firms. The matrix can 
hold binary values for all-or-nothing dependence or 
values between zero and one to weigh the impor-
tance of links. We require that gii = 1 ∀i to generalize 
the case without interdependent security. Function I 
replaces D in equations (5), (6), and (7).

To study the implication of interdependent security, 
it is convenient to regard symmetric interdependence 
between two firms 1 and 2 only. We obtain

p I s s D s D s( )( ) ( )( )( ) ( )= α = − − − α, , 1 1 1 , and
(10)

1 1 2 1 2

p I s s D s D s( )( ) ( )( )( ) ( )= α = − − − α, , 1 1 1 ,
(11)

2 2 1 2 1

where α ∈ ]0, 1] is the degree of interdependence 
corresponding to the values in g1,2 and g2,1 of the gen-
eral model. Without loss of generality we restrict the 
security investment to si ∈ {1, 2}, assume the secu-
rity productivity β = ½, initial wealth w = 3, and the 
loss l = 4. Table 1 shows the payoffs of a matrix game 
between both firms deciding on security investment 
without the option to seek market insurance as a 
function of α.19

For any degree of interdependence α > 0, the only 
pure strategy Nash equilibrium is (s1, s2) = (1, 1)—
both firms invest little in security—because no firm 

helps to better align the incentives of policyholders 
with the interest of the insurer (and by extension all 
policyholders in its pool).

4.3.3. Insurance fraud
Insurance fraud occurs at the time of indemnifica-

tion. Analyzing causal relationships, attributing losses 
to events, and verifying insurance policy conditions 
in (re-)programmable networked systems is a com-
plex and time-consuming task. Digital forensics are 
in principle mature enough to provide reliable results  
after outside attacks. Nevertheless, ambiguities remain 
for technical and political reasons—the latter if the 
attack involves a state actor and diplomatic relations 
are concerned. Digital forensics reaches its limits if 
an inside attacker falsifies traces or plants misleading 
evidence (Böhme et al. 2009). This may open a win-
dow of opportunity for fraudsters to overstate losses 
until the levels of insurers’ fraud prevention and detec-
tion systems in the claims management processes are 
comparable to those in conventional insurance. The 
opposite situation, where policyholders forgo a frac-
tion of the loss that they cannot substantiate, acts as 
a barrier to the development of insurance markets 
(Öğüt, Raghunathan, and Menon 2011).

4.4. Interdependent security

Whereas adverse selection and moral hazard are 
known and understood in conventional insurance, 
interdependent security is highly specific to the 
nature of cyber risk.18 Interdependent security is a 
special kind of externality best modeled by modi-
fying the defense function: for each node in a net-
work, the probability of a loss depends not only 
on its own security (controls) but also on the secu-
rity of all connected nodes. To illustrate this point, 
recall that the much-quoted Target data breach in 
late 2013 was caused by a security hole at one of 
its suppliers.

18The term has been coined by Kunreuther and Heal (2003), while Varian 
(2002) has modeled the same phenomenon for cyber security slightly 
earlier.

19The example assumes risk-neutral firms because we do not consider 
market insurance. Qualitatively similar results can be found for models 
with risk aversion (e.g., Johnson, Böhme, and Grossklags 2011).
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bootstrapping a deep market for cyber risk insurance, 
possibly with the help of subsidies justifiable with 
the provision of a public good. However, important 
limitations remain. There may be free-riders that do 
not buy insurance. They enjoy the benefits of the 
public good while having no incentive to contribute. 
Another issue is competition in the insurance market. 
A monopolist is in the best position to act as social  
coordinator, but it is well known that absence of 
competition leads to inefficiencies and premium 
levels that generate monopoly rents. However, if 
multiple carriers compete and insure different parts  
of interdependent networks, they would have to 
engage in information sharing at a depth and speed 
unprecedented in conventional lines of insurance. 
To thwart the concerns of price-rigging in such close 
relationships between competitors, the whole scheme 
would have to be run under the watchful eyes of a 
trusted party.

4.4.3. Literature
Interdependent security has inspired many ana-

lytical models.20 Most prominently, Öğüt, Menon, 
and Raghunathan (2005) are the first to combine the 
concept with market insurance and study the social 
coordination mechanism. Hofmann (2007) considers 
imperfect information and adds premium differentia-
tion to the analysis. Bolot and Lelarge (2008) explore 
mean field approximation to analyze the possibility 
of coordinated solution with the help of insurance for 
selected network topologies (also Lelarge and Bolot 
2009). Shetty et al. (2010) note that a coordination 
mechanism that maximizes welfare with the help of 
market insurance will not, in general, maximize the 

can improve its payoff by unilaterally switching to 
si = 2. However, the social optimum of this game is 
(s1, s2) = (2, 2)—both firms invest much in security. 
This indicates a classical prisoner’s dilemma. In other 
words, if networked firms secure their nodes, inter-
dependent nodes may free-ride on their efforts. As 
a result, no single party wants to contribute to the 
network security, which exhibits characteristics of a 
public good in this kind of model.

4.4.2. Implications
Interdependent security has two important impli-

cations for insurers. First, insurers not only face the 
difficulty of measuring and monitoring the security 
practices and exposure of their policyholders. To pre-
cisely model the risk arrival, they also need to col-
lect information about the security of interconnected 
nodes. These may be owned and operated by parties 
without contractual relationship with the insurer, 
possibly residing in different jurisdictions. In the 
absence of this information, insurers must resort to 
conservative approximations. They may at least con-
sider including the number of incoming edges and 
indicators about the degree of interdependence in the 
premium calculation.

Second, insurers may provide the social coor-
dination mechanism to resolve this instance of the 
prisoner’s dilemma. If the insurer can observe firms’ 
security effort, it can (and should) design a pricing 
scheme that incentivizes security investment at the 
social optimum. This is in the best interest of all policy-
holders and leads to welfare improvements beyond 
what is achievable with risk pooling in conventional 
insurance lines. This idea is a strong argument for 

Table 1. Interdependent cyber risk as a matrix game  
between two defenders

Security of firm 2

Security of firm 1 low: s2 = 1 high: s2 = 2

low: s1 = 1 –α, –α 1
2

,
3
2

− α − α

high: s1 = 2
3
2

,
1
2

− α − α
3
4

,
3
4

− α − α

20Many economic analyses of cyber risk insurance have appeared in 
technical venues. This has led to some abuse of terminology, which may 
cause confusion to people entering the area. For example, a conference 
paper with “market analysis” in its title does not model a market (Pal et al. 
2014); a workshop paper with “insurance” in its title does not consider 
risk aversion (a necessary condition for insurance) but models a social 
redistribution scheme (Naghizadeh and Liu 2014); Öğüt, Raghunathan, 
and Menon (2011) use “correlation” in the title but model interdependent 
risk; and Shetty et al. (2010) model an unconventional type of risk aversion 
by leaving the security investment outside the utility function (unlike 
equation (27) of Ehrlich and Becker [1972]).
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may remain too few policyholders to pool such risks. 
This is one facet of the more general “N = 1 problem” 
in the technology sector, where dominant suppliers  
are unparalleled. Tendencies of such concentration 
can be observed in industries such as standard soft-
ware, Internet search, cloud hosting, and online social 
networking.

Finally, how does the existence of a market for 
cyber risk insurance affect competition? Arguably, 
if insurance can price cyber risk precisely, then pre-
mium differentiation would make more diverse risks 
less expensive to insure. This could partially offset 
the advantage of incumbent platforms and therefore 
stimulate technical diversity and economic competi-
tion. Both are considered desirable goals that generate 
positive externalities on firms that do not participate 
in a market for cyber risk insurance.

5. Actuarial modeling

Formal economic models often simplify loss dis-
tributions to central moments or Bernoulli trials. By 
contrast, premium calculation in practice requires 
knowledge of the full loss distribution in order  
to determine the right amount of safety capital  
(cf. equation (7)).

5.1. Data sources

The preferred data source for actuarial modeling 
in conventional insurance is historical claims. Due 
to the novelty of cyber risk, the nascent insurance 
market cannot look back at a long history. Deduct-
ibles and rational underreporting keep the number of 
data points artificially low. Moreover, historical data 
is of limited use, because threats, vulnerabilities, and 
controls evolve rapidly with the pace of the techno-
logical development.

Technical indicators are an alternative data source 
for monitoring the threat landscape. Typical measure-
ment setups include

• sensors measuring traces of known attacks (e.g., 
packet backscatter or passive DNS analysis, see 
Bilge et al. [2011]);

overall security investment (later extended and refined 
in Schwartz and Sastry 2014). Johnson, Böhme, and 
Grossklags (2011) study symmetric equilibria in fully 
connected graphs where firms can buy market insur-
ance and invest in two types of security controls, 
one that generates externalities and another one that 
does not. Against the backdrop of this research, it is 
remarkable that we could not find any empirical quan-
tification of interdependent security in a real network.

4.5. Market structure

The insurance business benefits from economies of 
scale and scope. The amount of safety capital needed 
per policyholder is smaller for large and diverse port-
folios for several reasons. The central limit theorem 
predicts that realized losses deviate less from the 
distribution mean as the portfolio size increases, and 
fixed administrative costs can be distributed over 
many policyholders. Moreover, transaction costs 
per contract (for underwriting and monitoring) are 
smaller if each policyholder has multiple policies 
from the same insurer. Empirical evidence suggests 
that some conventional lines of insurance have fea-
tures of a natural monopoly (Emons 2001), although 
the data confounds public and privately run carriers 
(e.g., von Ungern-Sternberg 1996). Cyber risk insur-
ance generates additional scale effects related to the 
monitoring of policyholders and the topology of 
their connections to interdependent systems owned 
and operated by others. Finally, the social coordina-
tion function (see Section 4.4.2) would require tight 
guidance and widely accepted standards if it is to be 
realized by competing organizations.

Another aspect is the market structure of potential 
policyholders. Insurance is most efficient if insurers 
can pool many diversifiable risks, each big enough 
to be substantial for the policyholder but not cata-
strophic for the insurer. Concentration among policy-
holders renders insurance less attractive because 
firms may prefer to accept small risks, avoiding the 
transaction costs of risk transfer. Risk acceptance  
remains problematic for larger or internally cor-
related risks (Böhme and Kataria 2006), but there 
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address) level can be inferred from various blacklists 
compiled from end users’ abuse reports as well as from 
technical measurements. Law enforcement agencies 
maintain registers of cyber-related incidents pri-
marily to compile official police statistics. However, 
these sources are known to be particularly prone to 
underreporting. We expect that registers will become 
more relevant in the future as many jurisdictions plan 
mandatory reporting for general security incidents 
and sanction noncompliance (e.g., EC 2013).

Victimization surveys25 complement the list of data 
sources. Unlike technical indicators and incident 
reports, surveys draw a more representative picture 
of the impacts of cyberattacks on consumers and 
businesses. They may serve as a basis to estimate 
the baseline risk. Well-known limitations of con-
sumer surveys are that questions must be notoriously 
superficial and the resulting data is prone to response 
biases (Florêncio and Herley 2011). The last data 
source consists of indicators inspired from finance. 
For example, Geer and Pareek collect and publish a 
monthly sentiment indicator from a panel of security 
experts.26 Others suggest to monitor underground 
marketplaces for prices of goods and services related 
to cybercrime (Thomas et al. 2015; HPE 2016) or 
track volumes and prices on markets for vulnerabil-
ities (Zhao, Grossklags, and Liu 2015).

5.2. Individual loss distribution

Research on loss distributions for cyber risk is 
scattered over multiple disciplines. The shortage of 
data may require Bayesian methods for extracting 
the maximum information from a few data points 
and finding appropriate ways of incorporating expert 
knowledge. Actuaries also need to find the right 
balance between parsimonious models and repre-
sentative models, which convey the complexity of 
the networked environment. However, there is no 

• spam traps and “honeypot” computers that mimic 
vulnerable devices and are instrumented to sense 
attack behavior (Provos and Holz 2007); and

• trackers observing command-and-control infor-
mation of the botnets21 that serve as primary infra-
structure for cybercrime.

Several organizations collect this type of data and 
make it available to interested parties.22 Proprietary 
threat intelligence may also include information col-
lected by vendors of antivirus software on their clients’  
devices. A shortcoming of these data sources is that they 
do not include controls and ultimately loss amounts.

The security practices of firms (and to some extent 
their suppliers) are primarily measured with self-
assessments, typically as part of the underwriting 
process. Moreover, a new industry of intermediaries 
for cyber risk analysis is forming. These services 
promise security ratings based on remote technical 
measurements (e.g., scans of the corporate Internet 
address space, maturity of the corporate website tech-
nology, etc.) and aggregation of incident reports.23  
In contrast to self-assessments, rating availability 
does not depend on the cooperation of the rated firms. 
However, due to proprietary models and the novelty 
of these businesses, little is known about the accu-
racy of the ratings and their robustness to attempts 
of deception.

With the introduction of breach-reporting obliga-
tions for the loss of personal data, public and private 
registers began to collect information on incidents at 
the firm level.24 Incidents at the device (or network 

21A botnet (robot network) is a network of compromised computers, 
reprogrammed to be controlled remotely by criminals.
22For example, https://zeustracker.abuse.ch by the feed provider ZeuS 
Tracker, www.confickerworkinggroup.org by the Conficker Working 
Group, www.shadowserver.org by the Shadowserver Foundation, https://
honeynet.org by the Honeynet Project, and www.zone-h.org created by 
Roberto Preatoni.
23For example, the enterprises SecurityScorecard, Bitsight, and 
QuadMetrics.
24For example, https://datalossdb.org operated by the Open Security 
Foundation, www.privacyrights.org/data-breach by the Privacy Rights 
Clearinghouse (see Edwards et al. [2016] for a statistical model of breach 
sizes in this dataset), and the VERIS Community Database http://vcdb.org, 
one of the data sources of the annual data breach investigation report 
published by Verizon.

25Prominent examples are the annual reports of the Computer Security 
Institute (CSI) published between 1996 and 2011 (e.g., CSI 2011), periodi-
cal Eurobarometer studies (e.g., EC 2015), and global studies carried out 
by private firms (e.g., PricewaterhouseCoopers 2016).
26cybersecurityindex.org.
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originates from a distribution with a median of only 
$1.9 million. Its mean is inflated by a few outliers of 
up to $13.3 billion. This calls for a closer look at the  
tails of the individual loss distributions. In com-
parison to operational losses not classified as cyber, 
Biener, Eling, and Wirfs (2015) observe that cyber 
losses exhibit shorter (right) tails than conventional 
risks. This somewhat qualifies concerns raised by 
earlier studies reporting distinctive features of heavy 
tails in cyber loss data (Maillart and Sornette 2010; 
Edwards, Hofmeyr, and Forrest 2016; Wheatley, 
Maillart, and Sornette 2016).28

The left tail deserves attention as well. Data from 
a consumer victimization survey indicates that loss 
distributions are zero-inflated even after controlling 
for the (rather unlikely) event of becoming a victim 
of cybercrime. According to Riek et al. (2016), only 
33% of identity theft29 victims in online banking suffer 
monetary losses. This subset of victims experiences 
direct financial losses of on average €2,150 per inci-
dent; the median is €630. This highlights the errors 
caused by replacing these kind of loss distributions 
with a simple Bernoulli loss model (see Section 4.2), 
where the probability of a fixed loss of €2,150 would 
be p = 0.007 in five years, suggesting an actuarially 
fair (i.e., lower bound) premium of about €3 per year 
if the entire population was insured.30 Recall that 
knowledge of the shape of the individual loss distribu-
tion is necessary (but not sufficient) for determining 
the compound loss distribution.

5.3. Compound loss distribution

The compound loss distribution determines the 
realization of aggregate claims against an insurer 

consensus on data sources or appropriate methodol-
ogy so far. Industry reports often provide estimates 
of central moments. For example, based on an 
analysis of 176 cyber insurance claims, NetDiligence 
(2016) reports an average cost per incident of about 
$0.7 million in 2016. In a study on insurability of 
cyber risk, Biener, Eling, and Wirfs (2015) select  
994 cyber events from a commercial database of 
publicly reported general operational losses between 
1971 and 2009. They report a mean loss per cyber 
incident of $40.5 million. Several authors (Gordon, 
Loeb, and Zhou 2011; Gatzlaff and McCullough 
2010) consistently report a negative stock market 
reaction following the announcement of breaches at 
publicly traded companies. The effect is on the order 
of 1% in terms of short-term cumulative abnormal 
return, a common metric of the event study method 
(MacKinlay 1997). This translates to losses per inci-
dent on the order of $300 million under the assumption 
of an average market capitalization of NASDAQ-100 
companies between 2000 and 2010.27

All these figures are not directly comparable 
because contexts, conditions, and methods vary 
between studies. Should average losses be reported 
per record, per incident, per firm, or for entire sectors 
or economies? Shall losses include indirect costs? 
Shall they include or exclude recovered values? 
Unfortunately, some of the frequently cited studies 
are not even transparent about their methodology. 
Academics have flagged these issues (e.g., Anderson 
et al. 2013; Riek et al. 2016), but a commonly agreed 
knowledge base is still not within reach. One may 
hope that the experience of the insurance industry will 
facilitate the development of comparable standards 
for this risk class.

Even if estimates of central moments were accu-
rate and comparable, they reveal very little about the 
shape of a loss distribution. Most loss distributions are 
skewed to the right. For example, the mean estimate 
of $40.5 million in Biener, Eling, and Wirfs (2015) 

27The number is considerably smaller at $80 million for the average 
company in the NYSE Composite, which includes smaller and less- 
technology-focused companies.

28Note that heavy tails are observed primarily for the count data of 
breached records whereas moderate tails are observed in monetary losses 
(of otherwise incomparable data sources). Besides many other factors, 
this may hint at a concave relationship between the number of breached 
records and the total cost of a breach.
29Attackers impersonate their victims using stolen access credentials or 
identifying information.
30The survey asked for incidents in the past five years. About 2% of the 
sample reported victimization experience for the specific case of identity 
theft in online banking. The data is representative for the adult population 
of Internet users in six European countries: Germany, Estonia, Italy, The 
Netherlands, Poland, and the United Kingdom.
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Positively correlated risks generally shift the 
probability mass of the compound distribution to the 
extremes, thereby thwarting the balancing property 
of pooled risk, the very principle that makes insur-
ance economically viable. Figure 5 illustrates this 
for n = 200 homogeneous Bernoulli risks, each caus-
ing a fixed loss of l = $1 million with probability  
p = 0.2. We use a single-factor model of correlation, 
where a fraction ρ of the loss probability is deter-
mined by a common Bernoulli trial—for instance, a 
newly discovered vulnerability in standard software. 
The model is set up to keep the expected portfolio 
loss independent of the strengths of correlation ρ (see 
Böhme [2005] for the specification). It demonstrates 
that correlation affects the shape of the compound 
loss distribution. With increasing ρ, more and more 
probability mass is shifted to the sensitive right tail. 
In the extreme case of ρ = 0.3, the insurer faces a 
non-negligible risk of losing $100 million in a period, 
more than twice as much as it can expect in pre-
miums if the actuarially fair premium is taken as a 
baseline. To some extent, this can be compensated 
for by increasing the loading ~ (cf. equation (7)), but 
the market disappears if higher premiums ~ render 
risk transfer uneconomical for firms’ levels of risk 
aversion.

Estimating the compound loss distribution for 
a portfolio of real cyber risks is a major challenge. 
Cyber risk insurance suffers from a lack of reliable 
data in general, and estimating multivariate properties, 
such as correlation coefficients between distributions, 
demands even more data points than estimates of 
univariate (central) moments. Moreover, the depen-
dence structure between many risks is most likely 

who covers a pool of many risks. It is given by the 
convolution of all individual loss distributions if 
the risks are statistically independent. However, this 
important condition does not apply to large parts of 
cyber risk. The very success factors of information 
technology, economies of scale, standardization  
of programmable devices, and global networks 
create complicated dependence structures between 
loss distributions of networked components. This 
is because standard software has common vulner-
abilities that can, in the worst case, be exploited 
remotely at global scale.

The risk of correlated failure has been prominently 
mentioned by Geer et al. (2003), at the time attributed 
to the near-monopoly of Microsoft on the desktop  
software market. With Unix-based alternatives regain-
ing strength as well as competing and fragmented 
platforms in the mobile market, the situation has 
somewhat changed. However, vulnerabilities in popu-
lar libraries such as zlib or OpenSSL, which are open 
source and widely used on all platforms, remain a 
source of concern. Similarly, concentration on the 
market for basic cloud services (infrastructure and 
platforms) may lead to correlated failures of down-
stream cloud services. Consequently, an insurer’s 
profitability in cloud services policies (or business 
interruption if the business depends on such services) 
rests on the second- or third-tier cloud operators’ 
ability to avoid single points of failure.31

31Insurers may exclude this type of risk, but the resulting policies will 
be considerably less attractive to businesses using cloud services. They 
might also try to hold suppliers liable after incidents, but large events 
will soon exhaust the suppliers’ capital stock.
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Figure 5. Probability density of compound loss distribution  
for uncorrelated (left) and correlated (right) risks
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networks, foremost the routing topology of the Internet, 
exhibit scale-free characteristics.

Note that this topology may be, but is not neces-
sarily, aligned with the topology governing inter-
dependent security (see Section 4.4). Both concepts 
are related, but distinct. Interdependent security 
connects defense functions and thus parameters of 
individual loss distributions. By contrast, risk pro-
pagation leads to cumulated risk, that is, dependence 
between realizations of losses. Correlation is a special 
form of the latter. In other words, firms anticipate 
interdependent security in their cyber risk manage-
ment, whereas insurers (and their regulators) must 
primarily be concerned about cumulated risk.

The fear of cumulated cyber risk led reinsurers to 
explicitly exclude cyber risk in the early 2000s, a fact 
still named as a barrier to the development of cyber 
risk insurance a decade later (ENISA, Robinson, and 
RAND Europe 2012). Alternative forms of bulk cyber 
risk transfer, such as securitization or catastrophe 
bonds, have been discussed but cause concerns about 
moral hazard by investors who may find themselves 
in a position where they benefit from cyber incidents 
(Anderson et al. 2008).

6. Conclusion

Cyber risk insurance as a risk management tool 
has not kept pace with the adoption of information 
technology. At the time of writing, the market is 
about to develop, primarily in comfortable niches, 
but increasingly taking on more substantial expo-
sure. If there is anything to be learned from the last 
financial meltdown, adding layers of indirection is 
a good idea only if the party that takes the risk is in 
a better position to understand, mitigate, and even-
tually bear it. Cyber risk quantification faces many 
challenges in the first place. It differs, as laid out in 
this paper, in many important respects from the 
conventional risks for which the insurance industry 
has built an expertise to model and price.

This paper could close with the known mantra 
and call for more actuarial data, or it could complain 

not homogenous, and may be more complex than 
linear correlation between central moments. Extreme 
value theory has been applied in finance and insur-
ance (Embrechts, Klüppelberg, and Mikosch 1999) 
in order to characterize and estimate tail risk in 
compound loss distributions. If individual risks are 
dependent, copulas offer very general models of 
dependence between variables that can be parame-
trized to account for co-occurrence of extreme events 
(Nelsen 1999). These ideas have been brought to 
cyber risk analysis. Using a t-copula, which captures 
tail dependence, Böhme and Kataria (2006) report 
evidence for positive dependence between the attack 
activity observed at 35 globally distributed sensors 
(honeypots—cf. Section 5.1). This data source tracks 
threat information, not losses or claims. The result 
can nevertheless be interpreted as an indication of 
structural dependence, which will also drive the 
relevant loss distributions for insurers.32

In the absence of empirical data, analysts must 
resort to simulations. They can leverage the network 
environment component of the cyber risk insurance 
framework (Figure 3) to study propagation of risk 
along the edges of the graph structure. Lorenz, 
Battiston, and Schweitzer (2009) propose a method-
ology based on the popular (but often misleading) 
mean field approximation.33 Johnson, Laszka, and 
Grossklags (2014) study the computational complex-
ity of the exact solution for different classes of topol-
ogies. While homogeneous networks and star-shaped 
topologies (see the second and third examples in 
Figure 4) permit efficient solutions, the problem is 
NP-hard in general. For the special case of scale-
free networks, the authors show that the compound 
loss distribution cannot be computed from a random 
sample of nodes, a plausible situation for an insurer 
who shares the market with competitors or firms that 
mitigate, accept, or avoid their risks. Many natural 

32Copulas have also been proposed to obtain more precise individual loss 
distributions of large enterprises where a single threat can affect many 
devices at the same time (see Herath and Herath 2007).
33The drastic simplification of this approach drops all local information 
about interactions between nodes and replaces it with a global average.
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incentives to be the first mover if all competitors 
benefit equally from the fruits of the efforts.35 These 
and other lessons learned from the analysis in this 
article are summarized in Box 3.

Foreseeable future developments include that more 
industries will follow the model and the economic 
logic of the software industry. Consequently, more 
risk is taking the characteristics of cyber risk. Current 
technology trends, such as the Internet of things, the 
wake of a fourth industrial revolution, autonomous 
vehicles, and mass-customized medication based 
on computer-assisted diagnosis, just to name a few, 
support this point. In this context, the need for cyber 
risk analysis is paramount on the individual and 
compound level. It is hardly responsible to embrace 
further increases in society’s dependence on infor-
mation technology without being able to monitor the 

about the chicken-and-egg problem that actuarial 
data will not become available unless policies are 
written and claims filed. However, even decades of 
claims about “yesterday’s attacks” will not inform 
about “tomorrow’s risk” in a domain where “moving- 
target defense” has become a dictum. Models of cyber 
risk arrival need to be more predictive. They must 
draw on the available data at earlier stages of our  
cascade model of cyber risk arrival (cf. Figure 2). This 
includes information about the dependence topology. 
This calls for data-sharing frameworks between com-
petitors or with intermediaries in order to be able to 
calculate compound loss distributions for the parts 
of a larger network in an insurer’s portfolio.34 Some 
authors see a role for the government as a standard-
setter to facilitate this exchange (e.g., Biener, Eling, 
and Wirfs 2015).

More systematic collection and evaluation of data 
at early stages is also essential for identifying risk 
factors and quantifying their effects. The checklists 
used for underwriting cyber risk today may help 
lawyers identifying conditions precedent to liability,  
but they seem too superficial for meaningful premium 
differentiation. Premium differentiation, however, is a 
crucial instrument to stimulate better security practices 
at deployment and operations and, in the long run, 
pass the signal up the supply chain, where it could 
stimulate more risk-conscious software development 
and systems engineering (Heitzenrater, Böhme, and 
Simpson 2016). If this channel is too indirect and slow, 
insurers could take a more active role and liaise with 
software vendors. Laszka and Grossklags (2015) 
outline how insurers can proactively try to remove 
software vulnerabilities in order to reduce correlated 
risk and tighten the critical right tail of the compound 
loss distribution. While the idea is appealing, and 
has been mentioned by Anderson (2008) and Böhme 
(2005), it implies that insurers enter an unfamiliar 
partnership with the software industry. Moreover, it  
requires collective action because no insurer has 

34Compliance with privacy and data protection laws is an important 
requirement for such information-sharing arrangements. The legal and 
technical aspects thereof require further scrutiny.

35A conceivable, but morally and economically questionable, alterna-
tive would be to allow for hardened versions of software or services 
for policyholders of “activist insurers.” The increasing system diversity 
would nonetheless generate positive externalities for competitors and 
uninsured firms.

Box 3. Key messages

 1.  We propose a differentiated view on cyber versus  
conventional risk by separating the nature of risk arrival 
from the target exposed to risk.

 2.  Cyber risk is technically characterized by high design 
complexity, (re)programmable behavior of networked 
components, and a global dynamic threat surface.

 3.  Cyber risk is economically characterized by incomplete 
information, externalities, and correlation caused by  
common risk factors.

 4.  Cyber security is a timing game of information on threats 
and vulnerabilities.

 5.  Cyber risk insurers need to establish communication 
channels with policyholders in order to quickly react to 
changes in the threat environment.

 6.  Quantification of cyber risk suffers from a lack of relevant 
data. This is due to missing standards for data collection 
and missing incentives for data sharing.

 7.  Cyber risk analysis should emphasize early indicators  
over historical claims. It can draw on methods of network 
science to estimate portfolio loss distributions.

 8.  Cyber risk insurers may need to share more information 
with competitors than in conventional lines of insurance.

 9.  Cyber risk and insurance are nascent fields of inter
disciplinary research.

10.  As information technology gets pervasive, more industries 
follow the model of the ICT industry. More risks will take 
the characteristics of cyber risk.
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resulting cyber risk with principled and scientific 
methods.

Another stream of current technology develop-
ment explores massively distributed systems formed 
by pseudonymous actors that execute long-running 
protocols on top of the Internet infrastructure. These 
protocols update a cryptographically secured global 
data structure and resolve inconsistencies and con-
flicts without a central party. The success of Bitcoin, 
a virtual currency scheme and the most prominent 
example today, has drawn attention to this techno-
logical paradigm (Böhme et al. 2015). Although its 
future is subject to high uncertainty, a possible wider 
adoption has two important implications for cyber 
risk analysis. First, distributed ledgers (an umbrella 
term for said systems) produce a very different sort of 
cyber risk than described in this article. Besides tech-
nological factors, this novel cyber risk is determined 
by new “laws of nature” enforced by cryptography as 
well as the aggregate behavior of many autonomous 
algorithms reacting to these laws. Ground-breaking 
research and modeling effort is needed before these 
risks can be priced and transferred. Second, this 
technology has become a platform for disruptive inno-
vation of financial intermediation, with Bitcoin taking 
the lead on payments systems. Speculatively, this may 
not only change the type of risk insured but revolu-
tionize the way we think about and organize insurance.
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Öğüt, H., N. Menon, and S. Raghunathan, “Cyber Insurance 
and IT Security Investment: Impact of Interdependent Risk,” 
paper presented to the Workshop on the Economics of Infor-
mation Security (WEIS), June 2–3, 2005, Harvard University, 
Cambridge, MA.
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