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Abstract. Consider the hypothetical situation of a society with virtu-
ally unconstrained storage and exchange of personal information and
shameless exploitation thereof for decision making, for example in con-
tract negotiation. In this paper we develop a stylised formal model to
tackle the question if public knowledge about how exactly personal infor-
mation is used in decision making changes aggregate behaviour. Simula-
tion results suggest a slightly positive relationship between transparency
and conformity. This has implications on the common conjecture that
collection and processing of personal information is tolerable as long as
transparency is warranted.
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1 Introduction

Individuals, in participating in social interaction, share information about them-
selves with others. The advent of information and communication technologies as
tools and means for social interaction reduces the cost to collect, store, combine,
and process such information. It is well understood that accumulated personal
information from past transactions can create information asymmetries in future
transactions between the same agents [1] and, if information is traded, even for
transaction between agents who have never interacted before [2, 3]. Hence, data
collection has attracted criticism from consumer and civil rights organisations,
which reinforced a debate on privacy rights and informational self-determination.
As a result, since the 1970s, most countries have passed legislation to deal with
privacy concerns in state-to-individual and business-to-individual (consumer)
interactions.

Since the 1980s, following the earlier vision of Baran [4], computer scientists
have increasingly researched into technical solutions to combat the privacy prob-
lems caused by technological progress. Technologies such as anonymous commu-
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nication infrastructures, formalisation of privacy policies (e.g., P3P [5]), auto-
matic enforcement (access control [6]), as well as protocols for pseudonymous but
accountable transactions are nowadays subsumed as privacy-enhancing technolo-
gies (PETs) [7–9]. Most PETs are designed to support data avoidance, which
allows the construction of systems that are secure against relatively strong ad-
versaries by relying on distributed architectures. The objective is to minimise
the amount of trust required in individual transaction partners. Although some
PETs can be designed very securely in theory, their principle of data avoid-
ance/reduction is deemed impractical for many applications and the prospects
for a wide adoption of PETs in the near future remain dim. PETs are typically
designed for 1 : 1 or 1 : n interactions in which each partner has full control
over his or her devices and the signals they emit. We are not aware of practical
solutions for privacy-preserving n : m interactions (although problem descrip-
tions can be found in the literature, e.g. [10]) beyond very specific protocols for
transactions with clearly defined semantics (for instance, cryptographic voting
schemes or private multi-party auction protocols [11]).

1.1 From PETs to TETs

In the light of online social networking sites, sensor networks, ambient intelli-
gence and behavioural biometrics, where n : m interactions and untrusted de-
vices (sensors) are the rule rather than exceptions, it becomes evident that data
avoidance most likely will not offer a solution for privacy threats in general so-
cial interactions. Data avoidance cannot be enforced at all by individuals alone,
and only at unacceptably high costs by regulation (i.e., in the last consequence,
only through restrictions on the ownership of freely programmable devices or
sensors). Therefore, operable alternatives are sought.

Transparency-enhancing technologies1 (TETs) are believed to be more vi-
able options in these situations [12, 13]. The idea is to inform people in detail
how personal attributes (might) affect decisions concerning themselves. Con-
sider an example where personal information is used for insurance red-lining
or credit scoring. If affected individuals cannot escape the data collection, then
they should at least know how exactly a certain data disclosure, such as moving
in a statistically more ‘risky’ area, will affect their future premium or credit
conditions. One can argue that transparency limits excessive discrimination on
the base of personal information through three channels: First, on an individual
level, pre-emptive transparency-enhancing technologies assist people in making
decisions which do not affect their personal ‘score’ adversely. Second, on a mech-
anism level, scoring procedures that are not strategy proof, or the effectiveness of
which depends on the scoring details to remain obscure, become less useful and
would thus be avoided. Third, on a social level, if public scrutiny reveals that a
particular scoring function is arbitrarily discriminating and as such incompatible
with the society’s values, the risk of public uproar and reputation damage might

1 The notion of ‘technology’ is rather broad. For example, a sign informing pedestrians
about video surveillance in public places can be seen as a (low-tech) TET.
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put social pressure on data controllers not to implement abusive practices in the
first place. Note that all these outcomes depend on the optimistic assumption
that the TET is honest about the true data processing habits, a requirement
that is difficult to verify and enforce. So TETs, like PETs, are no panaceas that
solve all privacy concerns of a modern society.

1.2 TETs and individual behaviour

The topic of this paper is to study the effects of TETs on social behaviour, more
precisely on its impact to diversity in behaviour. Diversity between individuals,
i.e. the extent to which individuals live their own life-style, is considered as
valuable precondition in political and economic theory, where diversity is liked
to concepts of pluralism and competition, respectively.

At the first sight, two conflicting hypotheses on the relation between trans-
parency and diversity can be formulated intuitively.

– Transparency supports conformity because, in the absence of informa-
tion asymmetries and strategic interaction with others, the optimal path is
obvious and becomes ‘mainstream’.

– Transparency supports diversity because, without transparency, indi-
viduals are herded together by uncertainty and fear. The rationale under
uncertainty is not to stand out of the mass because the mass would barely
err (cf. Lundblad’s notion of a noise society [14]).

The objective of the remainder of this paper is to develop a formal model
with which the conflict between these two hypothesis can be resolved. While
fully acknowledging the potential problems of formal models, we will propose
(and put up for discussion) a multi-period game with heterogeneous preferences
and analyse under which conditions this prior heterogeneity is best preserved in
rational individuals’ actions.

2 Model

Imagine a world where each individual stores all information about social in-
teractions, possibly combines his or her database with others (in a market for
information, so prices for database peering may be negotiated), and uses this
information as decision support in future transactions. For simplicity, we rule
out any ambiguity and assume that all information is authentic and individuals
are perfectly identifiable.

2.1 Assumptions

The following list of assumption defines our model. The rationales behind them
are reported separately in Sect. 2.3 for the sake of clarity. A list of all symbols
used in this paper can be found in the Appendix.
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1. Individuals I(1), . . . , I(n) are endowed with heterogeneous private preferences
p(i) and initial wealth v(i) = 1.

2. The preference space is the circumference of a unit ring, with position drawn
independently from a uniform distribution between 0 an 1, i.e. p(i) ∈ [0, 1).

3. The system is updated in rounds. In each round k, all individuals emit a
signal s(i)k ∈ [0, 1).

4. The cost of emitting a signal is a weighted sum of two components cemit =
αc

(i)
pret + βc

(i)
disc.

(a) The pretence component increases with the distance from the individual
private preference p(i), hence cpret = D(s(i)k , p(i)). We define function
D : [0, 1)2 → [0, 1] as four times the square of the (shortest) distance
between two points on the ring.

D(x, y) =
{

4 · (x− y)2 for |x− y| ≤ 1
2

4 · (1− |x− y|)2 otherwise (1)

Note that D is symmetric and invariant to translation of its arguments
on the unit ring: D(x, y) = D(y, x) and D(x, y) ≡ D(x + k mod 1, y +
k mod 1).

(b) The discontinuity component is proportional to the distance between the
emitted signal in the current round s(i)k and in the past round s(i)k−1, hence

cdisc = D(s(i)k , s
(i)
k−1). c(i)disc := 0 in the first round of each individual.

Parameters α and β control the discomfort of dynamic adjustment in relation
to the discomfort of pretending different preferences.

5. There is a global entity who punishes individuals depending on their emitted
signals. The penalty is calculated as inverse distance between the signal s

and a focal point d: c(i)pen =
(

1−D(s(i)k , d)
1
2

)2

.
6. The existence of TET is modelled as knowledge about d. We will compare a

scenario without TET, where individuals do not know d, with one in which
all individuals know the exact position of d (through TET).

7. Total cost

c
(i)
tot = c

(i)
emit + γc(i)pen + ν = αc

(i)
pret + βc

(i)
disc + γc(i)pen + ν (2)

are deducted from wealth v(i) at the end of each round.
8. Individuals default if their wealth v(i) turns negative. There is no possibility

to transfer wealth between individuals, so no borrowing is allowed. Defaulted
individuals are re-initialised in the next round (v(i) = 1, new realisation of
p(i)), thereby losing their history of observations.

9. Individuals know the global parameters α, β, γ and ν as well as the set of
emitted signals from the last round. Apart from that, there is no communi-
cation between individuals (in particular no sharing of knowledge about the
possible position of focal point d).

10. Individuals act fully rational and maximise their own expected time to de-
fault. When indifferent between two alternatives which would lead to the
same number of rounds before default, they prefer the option where |v(i)| is
smaller after default.
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2.2 Problem statement

We use this model to study the relation between transparency and conformity
with Monte-Carlo simulations. After initialisation, the model is updated over N
rounds. At the end of each round, we compute two dependent variables:

1. A measure of conformity between individuals ψk, which is defined as the
square sum of the (shortest) absolute distance between neighbouring signals
s
(i)
k on the preference ring, linearly scaled to the range from ψmin = 0 (perfect

distribution; all signals are equidistant) to ψmax = 100 (full conformity; all
signals equal). This metric, aggregated over all rounds, serves as indicator
variable to answer the research question.

2. The mean time to default of all individuals who have defaulted in this round.
This metric can be interpreted as a co-variate for a concept like (negative)
‘social cost of information asymmetries’.

Both measures are calculated per round and than aggregated over time. This
means that conformity should not be interpreted in an inter-temporal fashion,
like concepts such as stability over time. Note that the valuation of diversity (i.e.,
inverse conformity) as a desirable property, as outlined in Sect. 1.2, is exogenous
to this model and not accounted (e.g., as negative social cost) in our metric for
the mean time to default. We do not make an attempt to combine both metrics
to a single scalar utility metric.

2.3 Rationales for the assumptions

In the following we list the rationales that have lead to our model formulation.
The ones printed in bold are important for understanding our design decisions.

– As to assumption 2: We choose the circumference of a unit circle to avoid
discontinuities at the margins of the preference space. This also ensures that
a pair of locations is equally distant from d. The distribution between these
points, based on individual preferences, can be interpreted as diversity.

– As to 3: Signals correspond to information disclosed in social interaction.
Individuals have the possibility to hide their true preferences if they deem
this advantageous in the long run. However this comes at a cost. For example,
if someone prefers not to disclose his home address to an online retailer, he or
she has to bear the transaction costs of going to a bricks-and-mortar store.
Also refraining from engaging in a transaction for privacy concerns can be
seen as incurred opportunity cost.

– As to 4a: A quadratic distance function is a technical assumption to en-
sure that unique minima exist (apart from some pathologic cases where two
options are possible due to symmetry).

– As to 4b: The discontinuity component constrains dynamic adjustment and
thus learning. If adjustment is too cheap, then some individuals will infer
the centre of the penalty distribution from observations so that they gain
‘transparency by experience’ even in the condition without transparency.
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Contrary, if adjustment is expensive, then the expectations formed in the
very first round of each individual are much more important for its survival.
Aside from technical considerations, discontinuity costs can be interpreted
as the social cost of changing one’s image, or sunk costs associated with pre-
vious actions. The fact that discontinuity costs are quadratic in the distance
between two signals implies that individuals prefer making small steps over
a couple of rounds rather than a single big leap.

– As to 5: The punishing entity models the disadvantage individuals might
incur from disclosing particular personal information. Although in reality,
privacy risks are caused by other people, we have chosen this asymmetric
setting (in fact, a player-versus-nature game) to keep the number of strate-
gic interdependencies low. We do not believe that this is a major factor
constraining the model’s external validity.

– As to 7: Cost ν > 0 is a small technical offset charged in each round in-
dependent of the individual’s preference and behaviour to ensure that all
individuals have finite time to default. (Otherwise the model could converge
in a deterministic state.)

– As to 10: Assuming unbounded rationality is often criticised (rightly so). In
assuming rational behaviour, our model abstracts from what we call aware-
ness aspects, which deal with the problem that people do not understand or
cannot interpret the information they have – in theory – at their disposal.
We acknowledge that awareness is at least as important in practice as trans-
parency, but both concepts must be differentiated and studied separately
before drawing conclusions about their joint effect.

2.4 Analytic approach

We will first discuss the optimal strategy for individuals in the simpler case of
full information before we advance to cases where d is unknown.

Strategy of individuals in regime with TET Individuals I(i) enter the
game with knowledge of d and adjust s(i) = s

(i)
k ∀k with respect to p(i) to

maximise their expected lifetime, that is minimise c(i)tot − ν.

c
(i)
tot − ν = α c

(i)
pret + β c

(i)
disc + γ c(i)pen (3)

= αD(s(i), p(i)) + β · 0 + γ
(

1−D(s(i), d)
1
2

)2

(4)

Using the fact |s(i) − d| ≤ 1
2 (from symmetry) and regarding only cases where

d ≤ 1
2 , d ≤ p(i) ≤ 1 and thus d < s(i) ≤ 1,

c
(i)
tot − ν = 4α (s(i) − p(i))2 + γ

(
1− 2(s(i) − d)

)2

(5)

The first-order condition of the minimisation problem (for α+ γ > 0) is

s(i) =
αp(i) + γ

(
d+ 1

2

)
α+ γ

. (6)

6



0

1/8

1/4

3/8

1/2

5/8

3/4

7/8

0.2 0.4 0.6 0.8 1 1.2 1.4

●

●

(a) α = 1, γ = 1, p = 1/4

0

1/8

1/4

3/8

1/2

5/8

3/4

7/8

0.2 0.4 0.6 0.8 1

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

(b) α = 1, γ = 1
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(c) α = 1, γ = 1/4
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Fig. 1. Preference and emitted signals under transparency. Radial plots of pref-
erence space. Symbols ◦ for preferences p, • for emitted signals s; connected
lines are functions of s: red for penalty, blue for pretence cost, and black for
total cost. (a): cost components and adjustment for example individual; (b) +
(c): adjustment of heterogeneous individuals for varying γ (different radius for
presentation clarity only); (d): time to default (in rounds) for young individuals
as a function of emitted signal s(i) for varying γ. Focal point d = 0 in all plots.
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Using translation invariance of D, we obtain the formula for d > p:

s(i) ≡
α (1− d+ p(i)) + γ

2

α+ γ
+ d mod 1 (7)

Equations (6) and (7) define the strategy for all individuals in the scenario
where TET is available and d is public (by definition). As the cost function is
fully deterministic and does not depend on other individuals’ behaviour, there
is no need to adjust the position in rounds k > 1. As a result, the weight for
discontinuity costs β does not appear in the optimal strategy in this case.

We will further derive a number of metrics as a function of the absolute
distance |x−d|, 0 ≤ x ≤ 1/2, which are needed below for the strategy in a regime
without TET. The probability distribution function for ‘young’ individuals (age
k = 1) directly follows from the uniform distribution assumption for realisations
of p(i) in [0, 1) and Eq. (6) solved for p(i).

fs1(x) = Prob(|s(i)1 − d| < x) =
{ 1
α

(
x(α+ γ)− γ

2

)
for γ

2(α+γ) < x ≤ 1
2

0 otherwise
(8)

As can be seen, fs1(s(i)) ≡ fs1(x + d mod 1) is a uniform distribution in the
interval

[
d+ γ

2(α+γ) mod 1, d− γ
2(α+γ) mod 1

]
with density α+γ

α .
The expected time to default (measured in rounds) of young individuals with

observed signals s(i) as a function of x = |s(i)−d|, x < 1
2 can be obtained directly

from the cost function (assumption 7):

K(x) =
⌊
(c(i)tot)

−1
⌋

=

⌊[
αD(x, |p− d|) + γ

(
1−D(x, 0)

1
2

)2

+ ν

]−1
⌋

(9)

=


4α

x− 1
α

(
x(α+ γ)− γ

2

)
︸ ︷︷ ︸

Eq. 6 solved for p(i)


2

+ γ (1− 2x)2 + ν


–1 (10)

=
⌊

α

γ(α+ γ)(1− 2x)2 + αν

⌋
(11)

Here we see that offset ν > 0 is essential to avoid a zero denominator. Fig. 1
(d) depicts the time to default as a function of s(i). In the repeated game, the
distribution of all observable signals fsk (as opposed to fs1 for young individuals
only) is proportional to the time to default.

Strategy of individuals in regime without TET We use a heuristic strat-
egy to model the behaviour of individuals if d is unknown.2

2 Although we have no proof that our strategy is optimal in the sense that it makes best
use of all available information to narrow down the position of d as tight as possible,
we believe that our algorithm is a quite good approximation. This conjecture is
supported by experiments with small deviations in our simulation environment.
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Step 1 – Choice of s(i)1 : After initialisation, an individual I(i) knows the rules of
the game, the global parameters (α, β, γ, ν), its own preference p(i) and m < n

signals s(j)0 of individuals in the previous round. Neither p(j), v(j), (j 6= i), nor
the age of other individuals are observable.

The best guess of d is a solution to the maximum-likelihood (ML) problem

d̂
(i)
1 = arg max

x
Prob(s(1), . . . , s(j), . . . , s(m)|d = x, ∀j 6= i) (12)

= arg max
x

∏
j

Prob(s(j)|d = x) = arg min
x

∑
j

− log Prob(s(j)|d = x)

The conditional probability can be obtained from Eq. (11), where we omit the
truncation to integers to smooth the gradient for numerical solvers, and scale to∫ 1− γ

2(α+γ)

γ
2(α+γ)

fsk(x) dx = 1 . (13)

Then, s(i)1 is calculated from d̂
(i)
1 using Eqs. (6) and (7), as in the case of trans-

parency. Performance indicators for the ML estimate of d dependent on γ and
the number of individuals n are reported in Tab. 2 in the appendix.

Step 2 – Two candidates for d̂(i)
2 : In the second round, individual I(i) has expe-

rienced cost c(i)tot,1 and thus can find out c(i)pen,1 using Eq. (2). Since c(i)pen,1 reveals

distance |s(i)1 −d|, this narrows down the possible location of d to two candidates,
d̂
(i)
2+ and d̂

(i)
2−. There are at least two options to decide between the candidates.

1. The static solution is to compare the likelihood for d̂(i)
2+ and d̂

(i)
2−, possibly

with observations from both rounds s(j)0 and s
(j)
1 to lower the estimation

standard error (although not a lot, as s(j)0 and s
(j)
1 are not independent).

2. There is also a dynamic solution based on the rationale that no individual
would ever reduce its distance to d. Therefore a comparison of signals s(j)0 and
s
(j)
1 contains information about the dynamic adjustment of other individuals

and therefore conveys information about the most likely location of d.

In practice, both solutions come to the same conclusions in the large majority
of cases. We have not investigated ways to combine the information optimally
or resolve conflicting results. Our experiments are based on a static update of
d̂
(i)
2 . Signal s(i)2 is choses using the step size rule described below (Eq. 17) with

a target position calculated from the refined estimate d̂(i)
2 .

Steps 3 and later – Optimal adjustment to d: The focal point d can be obtained
exactly from c

(i)
pen,1, c(i)pen,2, s(i)1 and s

(i)
2 . Finding the optimal step sizes to ap-

proach the ideal position s(i)∗ conditional to d is a discrete dynamic optimisation
problem. However, we argue that for 0 < β ≤ 5, the problem is posed in such
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a way that a reasonably good solution can be found sequentially by minimising
the cost in the current round.3 So, again, we minimise c(i)tot,k − ν.

c
(i)
tot,k − ν = α c

(i)
pret,k + β c

(i)
disc,k + γ c

(i)
pen,k (14)

= αD(s(i)k , p(i)) + β D(s(i)k , s
(i)
k−1) + γ

(
1−D(s(i)k , d)

1
2

)2

(15)

Restricting the analysis to cases where d ≤ 1
2 , d ≤ p(i) ≤ 1 and thus d <

s
(i)
k , s

(i)
k−1 ≤ 1.

c
(i)
tot,k − ν = 4α (s(i)k − p

(i))2 + 4β (s(i)k − s
(i)
k−1)2 + γ

(
1− 2(s(i)k − d)

)2

(16)

This leads to the first-order condition (and symmetric equivalents)

s
(i)
k =

αp(i) + β s
(i)
k−1 + γ

(
d+ 1

2

)
α+ β + γ

. (17)

We have also implemented a numeric iterative solver for the dynamic minimisa-
tion problem and found that it leads to substantially better solutions only when
β is large (see Fig. 2) and initial estimates d̂(i)

1 bad. Both occurs rarely in our
experiments.
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Fig. 2. Difference in adjustment step sizes between myopic and inter-temporal
optimal solution. d = 0, p = 1/10, α = 1, γ = 1/2. Signal s(i)k−1 = 0.4 is very unre-
alistic and only chosen to emphasise the difference. The total cost disadvantage
of the approximation (until convergence) is 0.7 % (left) and 4.7 % (right).

3 This means that individuals are myopic or uncertain about the default threshold.
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3 Results

It is obvious that the diversity measure depends on parameters (α, β, γ, ν) as
discontinuity costs clearly determine the individuals’ ability to emit favourable
signals. Therefore, we will compare the diversity of systems conditional to these
parameters.

To structure the discussion of results, we fix parameters α = 1, ν = 1/10 and
n = 100 for what we call baseline results. We compare the case of transparency
(TET available) with no transparency for different severity of disadvantage due
to unfavourable personal attributes: small (γ = 1/10), medium (γ = 1/2), and
substantial (γ = 1) ‘privacy infringement’. In the case of diversity, we further
differentiate between low (β = 1/10), medium (β = 1) and high (β = 4) discon-
tinuity costs.

Figure 3 shows two simulation snapshots for selected parameters with and
without transparency (see figure caption for more details), and aggregate mea-
sures of conformity and time to default are reported in Tab. 1 for all relevant
parameter combinations.

For the baseline results, it turns out that conformity ψ is always maximal in
the case of transparency, although the relative difference to the simulations with-
out transparency is rather small. We could confirm this tendency in many other
parameter settings not reported here. We interpret this as a tentative support of
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Fig. 3. Visualisation of a simulation snapshot of 50 subsequent rounds. The
preference space is mapped to the polar axis and time increases with distance
from the origin. Emitted signals from unique individuals are black connected
lines. Each s

(i)
1 is annotated with symbol ∗. The red line shows the evolution of

d̂1 over time. Parameters are n = 100, d = 0, α = 1, γ = 1/2, ν = 1/10.
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Table 1. Simulation results: Impact of transparency-enhancing technologies

conformity ψ mean time to default

transparency no transparency transparency no transparency

β = 1/10 β = 1 β = 4 β = 1/10 β = 1 β = 4

Baseline results

n = 100, ν = 1/10

γ = 1 27.5 27.3 26.3 26.2 5.6 5.6 5.6 5.6
γ = 1/2 12.8 11.6 12.2 12.4 6.3 6.3 6.3 6.3
γ = 1/10 2.0 1.5 2.0 1.9 8.4 8.4 8.4 8.4

Early default

n = 100, ν = 1/4

γ = 1 26.1 24.5 24.5 23.7 3.1 3.1 3.1 3.1
γ = 1/2 12.4 11.7 11.5 10.0 3.4 3.4 3.4 3.4
γ = 1/10 1.9 1.4 1.2 1.4 4.0 3.9 3.9 3.9

Limited population sample

n = 10, ν = 1/10

γ = 1 40.1 39.3 37.7 38.9 5.6 5.3 5.4 5.5
γ = 1/2 32.6 20.7 20.5 26.9 6.2 6.0 6.1 6.3
γ = 1/10 10.6 10.1 11.7 8.4 8.5 8.2 8.3 8.3

Aggregate metrics computed from 1000 iterations (α = 1)

our first hypothesis (transparency supports conformity), but the probably more
interesting result is that the influence of transparency on diversity is so small.
The much higher differences in ψ and mean time to default between different
values for γ are not surprising, as γ directly influences the dispersion of the ideal
distribution of individuals in the signal space (see Eq. 8). The mean time to de-
fault is approximately independent from the presence of transparency (in fact,
at a higher precision, individuals in games without transparency default slightly
earlier on average). This observation as well as the constant time to default for
all values of β indicates that n = 100 individuals provide enough information for
sufficiently precise estimates of d̂1. In other words, the information disadvantage
of fully rational individuals without TET is rather small in our model compared
to full transparency. Arguably, this can be seen as unrealistic, so we check the
robustness of our results with two different parameter settings that both aim at
limiting the ‘information leakage’ from older individuals to young ones.

The early default result set accomplishes this goal by artificially high constant
costs ν. As a result, mean time to default drops to roughly one half of the baseline
results. This ensures that the fraction of experienced (i.e., ‘old’ an thus better
adjusted) individuals in the population decreases (see Fig. 4 (a) in the appendix).
Nevertheless, this does not alter our conclusion on conformity; quite the contrary:
the relative conformity gain in the case of transparency even widens.
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The findings on conformity remain broadly stable in the third result set
tagged limited population sample.4 The idea here is to increase the uncertainty
of the estimate d̂1 by reducing the number of individuals in the game to n = 10.
This can be interpreted as a kind of awareness constraint in reality, i.e. individ-
uals typically have no means to observe the population as a whole but rather
some randomly drawn peers. The higher estimation errors that cause discontinu-
ity costs during adjustment can be observed in Fig. 4 (b) (in the appendix) and
also cause measurable differences in the time to default between the cases with
and without transparency. This is coherent with the interpretation that informa-
tion asymmetries cause higher social costs if individuals have less observations
at their disposal to approximate hidden parameters.

All in all, keeping in mind all the limitations and caveats that go along with
the methodological approach, we conclude that our model suggests relatively
little impact of transparency on diversity, although with a slight tendency to-
wards a positive correlation between transparency and conformity. We did not
find supporting evidence for the opposite hypothesis.

4 Discussion

We see this work as an attempt to conceive a formal model of individual be-
haviour in different regimes of public knowledge about the consequences of per-
sonal data exposure. It is far too early to draw relevant conclusions for the real
world from such a small model, or to derive policy recommendations. Here it
is important to recall that the model compares two ‘second best’ options, and
favourable policies might include elements not captured in the models, say, a
combination of transparency, restrictions on personal data processing and a ban
of obvious discrimination by personal attributes (i.e., decreasing γ rather than
communicating d). This is why we rather see our proposal as a framework to
support structured reasoning about social aspects of privacy and transparency,
as well as a subject to critique and improvement. Our current list of ideas for
model extensions which may be considered, one by one, in further refinements is
given below. Where appropriate, we also comment qualitatively on the technical
consequences for the model and possible interpretations.

– Perception bias In the current model, the maximum-likelihood estimate
of d is efficient because the individual has access to a representative sample
of the signals emitted in the population. This is unrealistic, as people ob-
serve their peers over connections in social networks, where nodes in close
proximity tend to share similar preferences. The model could be augmented
by an observability rule (technically, a filter on s(j), i 6= j) that reflects these
restrictions.

– Multi-modal preference distribution In line with the previous point,
preferences are most likely not distributed evenly between individuals, but
rather in clusters. This is partly due to socialisation between peers, but

4 with one single exception for β = 1 and γ = 1/10

13



since social adaptation is not captured in our model, an exogenous multi-
modal (mixture) distribution for preferences could help to emulate this phe-
nomenon. However, care must be taken to keep the number of parameters
tractable, and whether individuals know them or not.

– Higher-dimensional preference space The low dimension of the prefer-
ence space restricts individuals in the choice of trade-offs between their pri-
vate preferences and their public ‘image’ (communicated through signals).
Possible candidates for higher-dimensional preference spaces are surfaces of
k-toruses, hyperspheres (both share the useful property that no disconti-
nuities exists at margins) or, for a discrete case, a binary vector. Higher-
dimensional preference spaces have the advantage that the penalty function
can be a distance measure in a lower-dimensional projection. Knowledge
about which dimensions are relevant (i.e., the coefficients of the projection
matrix) could be a distinguishing feature between transparency and obscu-
rity. This not only allows to adjust the degree of transparency more gradually,
but might also be deemed as closer to reality where information asymmetries
tend to exist on the selection of attributes used as discriminating features
(e.g., your high-school degree for credit scoring) while the direction of influ-
ence is more obvious (e.g., better grades, on average, imply better jobs and
thus lower credit risk). Higher-dimensional preference spaces also enable the
reflection of dependencies between attributes.

– Stochastic penalty One problem of our model that might drive the results
is the fact that individuals learn the position of the focal point so quickly
from incurred cost (for large n, more than 90 % of individuals know d in
second round, and with certainty in the third round). Although we try to
compensate for this by keeping time to default short, and thus the proportion
of uninformed individuals high, it would be desirable to find ways to cut the
immediate feedback. One option is to make the penalty discrete and stochas-
tic, so that individuals optimise over expected costs. This would clearly add
noise to the observations and impede learning. However, stochastic penalty
also complicates the model as lot, in particular since individuals would have
to make trade-offs between expected value and volatility. So additional as-
sumptions on risk aversion are needed.

– Penalty dependent on other individuals’ actions Yet another direc-
tion are penalty functions that depend on the individuals’ behaviour relative
to others (e.g., the cost is born by the q individuals closest to d). Such
a penalty function could mirror the dynamics of social norms, which have
empirically been found to affect individuals’ cost to emit certain signals (per-
ceived abnormality implies higher cost [15]). This seemingly simple change
has tremendous implications, as the setting would become a non-zero-sum
game between individuals. So optimal strategies will need observations of
others not anymore just to compensate information asymmetries, but also
to anticipate the (re-)actions of others. So making the penalty function de-
pendent on others seems difficult and might not be a good idea unless the
focus of study is strategic competition between individuals.
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– Endogenous penalty function Related to the previous point, one could
also consider to make the penalty function dependent on the (aggregate)
signals. This would reflect the property that the ‘punishing entity’ is part
of the society and formed by it in more or less institutionalised ways, such
as democratic decisions, populism in policy-making, or public uproar and
revolution. Strictly speaking, endogenous penalty functions imply that the
model turns into a game between individuals (see above). However, if n
is large, one can make the common assumption that individuals are ‘price
takers’ to justify that strategic interactions are disregarded.

– Behavioural features Finally, the rationality assumption could be weak-
ened by allowing for well-understood behavioural phenomena that are deemed
relevant for perceptions (and following action) in the area of privacy and
transparency, for instance through hyperbolic discounting of uncertain costs
in the future [16].

We would like to stress that this list of options is not very specific to the
research question studied in this paper, but applies to more general aspects of
modelling the distribution of personal information in a society. An overview of
literature that addresses topics at the intersection between privacy and technol-
ogy with a similar methodology, though in a more or less formal manner, is given
in the next section.

5 Related work

Social implications of permanent data traces have been studied by Friedman
and Resnick (‘social cost of cheap pseudonyms’) [17], Blanchette and Johnson
(‘forgetfulness’) [18] and lately also by Mayer-Schönberger [19]. Odlyzko [20] has
added that costs of a lack of privacy can also materialise in supplier rents through
better possibilities for price discrimination. A broader survey on the economics
of privacy has been compiled by Hui and Png [21].

Transparency as a remedy to personal information abuses as received little
attention so far. TETs in conjunction with PETs can seen as enabling tools
for Jiang et al.’s [22] principle of minimum asymmetry. This principle has been
developed in the broader context of privacy issues in ambient intelligence. It
is based on the assumption that information asymmetries between two parties,
data owner and data controller, negatively impacts the data owner in mak-
ing an informed decisions about disclosure of personal information to the data
controller. This is so because the data owner is uncertain about negative ex-
ternalities arising from the re-use of his or her personal by third parties that
collude with the data controller. These externalities correspond to our penalty
function, and the logic that technology cures negative externalities indirectly
(via reducing information asymmetries) is compatible with our model. The so-
lutions proposed in this framework differ from our model in several ways. First,
user-controllable data avoidance (i.e. PETs) are considered by Jiang et al. as
complementary technologies, but do not appear in our model (data avoidance is
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fixed to constantly hide the private preferences). Instead, we allow the individu-
als to alter their signal (personal attributes), though it comes at a cost. Finally,
Jiang et al.’s framework includes the concept of prevention by deterrence: tech-
nology supports mechanisms to detect data abuse and a legal framework ensures
that malicious data controllers are held accountable. This channel has no corre-
sponding element in our model. Also Brin’s (pointed and admittedly unrealistic)
concept of a transparent society [23] can also be seen as a spiritual forerunner
of our work, however without leaving individuals the choice to emit a different
signal than their endowed preference (that is not private any longer).

One of the key ingredients of modelling privacy-related behaviour on the in-
dividual level is the assumption of heterogeneous attributes between individuals
(our model does this by means of preferences). While this design decision is quite
obvious – otherwise, if all individuals were identical, hiding attributes shared
with all others is not very meaningful – researchers disagree in whether the at-
titude towards privacy should itself be modelled as heterogeneous (e.g. in [24,
25]) or not (for example [26]). Clearly, empirical evidence suggests the existence
of different stereotypes, such as privacy fundamentalists as well as pragmatists
[27]. However, adhering to the lex parsimoniae (parsimony principle), one may
consider to omit this detail. Dodds [28] approaches this important question with
evolutionary theory and proposes a model in which heterogeneous privacy con-
cerns are more stable than homogeneity, although the exact transition paths
depend on a number of (arbitrarily chosen) parameters. Note that privacy con-
cerns are heterogeneous in our model as well. They follow implicitly from rational
behaviour given heterogeneous preferences.

6 Summary and outlook

Our research was motivated by the debate about appropriate tools and technolo-
gies to assist people in dealing with their personal information in a world where
storage and processing of data becomes ever cheaper. We have argued that the
data avoidance approach pursued by advocates of so-called privacy-enhancing
technologies (PET) is impractical and unrealistic in many situations, so that
transparency-enhancing technologies (TET) are seen as a promising alternative.
This led us to the research question, how transparency on the consequences
of disclosure of particular personal attributes affects macro-social properties,
such as diversity and conformity. We have proposed a micro-economic model
of rational agents adjusting their data disclosure under various constraints, and
presented solutions for the optimal individual strategy in either case. Simulation
results tentatively suggest that transparency in fact fosters conformity, although
the effects we found are rather weak. Beyond this particular result, we see the
main contribution of this paper in the model proposal and the reflections on pos-
sible extensions, which may serve as a starting point for more complete (or more
parsimonious) models, which one day may be augmented by a measurement part
to be fit to empirical data.
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Appendix

List of symbols

α weight of pretence component in total cost
β weight of discontinuity component in total cost
γ weight of penalty component in total cost
ν cost offset per round (technical constant to prevent convergence)
ψ measure of conformity (variable of interest)
cdisc discontinuity cost (∝ distance to previous signals)
cpen penalty cost (∝ neg. distance between signal s and focal point d)
cpret pretence cost (∝ distance between preference p and signal s)
c
(i)
tot total cost of i-th individual
d location of vocal point (max. penalty); transparency ⇒ d is known
d̂
(i)
k estimated for d formed by the i-th individual in round k

D distance function in preference/signal space
fs1 probability distribution of ‘young’ individuals’ signals
fsk probability distribution of all individuals’ signals
i index for individual
I(i) individual (agent in the model) with index i
j alternative index for individual
k round index (as suffix)
K expected time to default (function over signal/preferece space)
m number of observable signals from previous round
n number of individuals in the model
p(i) private preference of i-th individual (0 ≤ p(i) < 1)
q quantile among individuals (0 ≤ q ≤ n)
s(i) signal emitted by i-th individual (0 ≤ s(i) < 1)
v(i) wealth of i-th individual (v(i) ≤ 1)

Table 2. Performance of the ML estimator for d̂ (in % pts.)

mean absolute error (MAE)
n γ = 1/20 γ = 1/10 γ = 1/4 γ = 1/2 γ = 1

5 14.38 10.16 6.91 4.33 2.75
10 10.77 7.41 4.85 3.15 1.88
25 8.07 5.88 3.23 2.47 1.55
50 7.30 4.31 2.59 1.61 1.07

100 4.47 3.20 1.91 1.52 0.80
200 3.81 2.46 1.43 0.91 0.61

Metrics computed from 100 runs after 50 iterations (α = 1, ν = .1)
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Fig. 4. Supplemental simulation snapshots. d = 0, α = 1, β = 1, γ = 1/2. See
caption of Fig. 3 for more details.
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