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Abstract. The promise of smart contracts (computer programs running
on a decentralized virtual computer) lies in the ability to execute agree-
ments without the risk of interference by powerful intermediaries. How-
ever, in practice, many smart contracts reintroduce privileged parties on
the application layer. They are programmed to enforce that certain func-
tions can only be executed by the owners of defined accounts. We pro-
pose and validate a method to detect such privileged parties from binary
smart contract code on the Ethereum platform. Our open-source imple-
mentation, Ethpector, can be used to verify claims about “zero-trust,”
reveal ownership structures, forensically analyze networks of virtual shell
organizations, and may support auditors when testifying ownership of in-
tangible assets on Ethereum held by conventional legal entities.
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1 Introduction

Privileged parties are entities that can unilaterally exercise control over a system
on which ordinary users interact. Decentralized systems are often designed to
minimize the influence of privileged parties in order to reduce the number of
entities users have to trust. This design principle can make systems more robust
to failures of individual components and arguably more trustworthy as a whole.

While, “zero-trust” transactions will probably remain a utopian vision [3,16],
Ethereum today provides the technical means to avoid certain trust relationships.
Yet, at the current state of Ethereum and its ecosystem, it is often unclear if
services offered on the platform indeed require less trust that centralized alter-
natives. In many cases, trust relationships are merely less apparent to users,
disguised in opaque program code, and renounced in marketing language.

It is instructive to illustrate this on a simplified technology stack as shown
in Figure 1. A decentralized network of miners participates in a protocol which
establishes consensus on the state of a replicated machine. This machine offers a
programming interface for applications (i. e., smart contracts) to run on. While a
decentralized platform is a necessary precondition for decentralized applications,
it is not sufficient. Developers can re-introduce privileged parties on a higher
layer by specifying that certain functions check the identity (i. e., Ethereum
address) of the caller against constants or state variables before execution.
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Fig. 1: Governance on different layers of the Ethereum technology stack.

To understand why privileged parties matter, consider the issues involved
in updating smart contracts. Whenever code on Ethereum is prepared to be
updatable (e. g., to be able to patch security vulnerabilities), there is some party
in control of the update [13]. This party has exceptional control over whatever
this application does. In fact, for the scope of the application, this party’s power
is comparable to that of an operator of a centralized system. For example, the
party authorized to update the smart contract of a token system is at least as
powerful as a conventional bank, the very type of intermediary cryptocurrency
systems set out to remove. The party can freeze accounts, adjust balances, or shut
down the entire token system. Even if there is no ‘wild-card’ option to replace the
code, the deployed code may allow privileged parties to update parameters of the
system, such as creating or destroying tokens, adjusting fees, or reassigning the
privilege to other parties. From a users’ perspective, this situation could be worse
than when dealing with a regulated bank because there is little hope for legal
redress. Besides legal and regulatory uncertainty, operators of token systems are
barely accountable. They are often identified by nothing more than pseudonyms
on social media or code sharing platforms. These examples highlight the need for
a technical method to detect the privileged parties of any given smart contract
before interacting with it.

Existing solutions to this problem are unsatisfactory. The canonical approach
to identify all privileged parties (or verify the absence of them) is to review the
source code of the smart contract. In a second step, one has to replicate the
compile process to ensure that the deployed code indeed implements the func-
tionality specified in the source code. Third, one has to inspect the transaction
that deployed the smart contract to ensure that it cannot change in the fu-
ture [10]. This laborious manual process requires deep technical understanding
of the platform as well as of the application in question. Clearly, this approach
does not scale. It also does not work for smart contracts whose source code is
not publicly available.

Contribution: This paper presents Ethpector, a tool that facilitates the
automatic extraction of privileged parties from smart contract binaries. We start
with a motivating example in Section 2. Section 3 proposes our method to extract
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Fig. 2: The governance structure of the CryptoKitties contract. Orange nodes
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privileged parties, which we evaluate against a curated set of ground-truth data
in Section 4. We discuss applications and limitations in Section 5. Section 6
discusses related work before Section 7 concludes. Ethpector is an open-source
implementation of the proposed method. It can be used to replicate all results
in this paper. We provide a brief description and feature list of the artifact in
the appendix.

2 Motivating Example

Established in late 2017, CryptoKitties belong to the first digital collectibles
on the Ethereum platform. They became precursors of the NFT hype. Figure 2
visualizes the governance structure of the CryptoKitties contract.1 The addresses
labeled CEO, COO, and CFO can execute the privileged function pause to halt
all contract activity, which in effect freezes all kitties. Furthermore, the CEO
is authorized to invoke setGeneScienceAddress, which sets a new reference to
the account responsible for creating kitties. This address controls how unique
new kittens are and thus may influence their valuation [17]. The power of these
privileged parties stands in contrast to the claims made on the CryptoKitty
website:2

1 The UNESCO defines governance as: “. . . structures and processes that are
designed to ensure accountability, transparency, responsiveness, rule of law,
stability, equity and inclusiveness, empowerment, and broad-based partic-
ipation.”; See http://www.ibe.unesco.org/en/geqaf/technical-notes/concept-
governance, Accessed: 14 June 2022

2 https://www.cryptokitties.co/about, Accessed 18 Jan 2022

http://www.ibe.unesco.org/en/geqaf/technical-notes/concept-governance
http://www.ibe.unesco.org/en/geqaf/technical-notes/concept-governance
https://www.cryptokitties.co/about
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“. . . each CryptoKitty is one-of-a-kind and 100% owned by you. It can-
not be replicated, taken away, or destroyed.”

Meanwhile, users seem to happily trust the privileged parties of this contract,
or might simply be unaware of this governance structure.

Our Ethpector tool, which generated the governance structure in Figure 2, is
designed to extract such privileged parties automatically from a smart contract
binary. This enables users to scrutinize claims and understand power relations
before sending funds to a contract. Applied iteratively, our method allows to
reveal ownership structures and track them through networks of “shell contracts”,
Ethereum’s equivalent to shell companies that are commonly used to conceal
wealth and decision power in the real world.

Yet another use case of Ethpector is when auditors certify virtual assets
on a real-world entity’s balance sheet. While holdings of ether and standard
tokens can be verified with common techniques, there is no canonical way to
testify ownership of – or other kinds of privileged access to – smart contracts.
To the best of our knowledge, the method presented here is the first to tackle
this problem in generality for arbitrary smart contracts.

3 Proposed Method

Smart contracts can implement privileged parties in many different ways. Our
aim is to identify functions in EVM binaries where parts can only be executed
by a privileged party. Moreover, we want to be able to identify the privileged
party by its Ethereum address.

3.1 Dead End: Heuristic Pattern Matching

We first considered to heuristically extract information from the most common
standardized interfaces. This approach as been used widely in the literature,
for instance to analyze token flows from log entries of popular token stan-
dards [4,7,8,6,14,15,5]. We identified the ownership pattern as a common form to
manage a single privileged party. As shown with code examples in Appendix C,
this pattern keeps an owner address in the smart contract’s state. This variable
is typically initiated with the sender of the transaction that deploys the code.
The pattern’s interface supports an getOwner function, which can be called on
the local node to identify the privileged party. Changes of ownership (i. e., of
the privileged party) can be tracked by watching for calls to changeOwner or by
observing OwnerSet logs emitted by the contract.

To evaluate the coverage of an approach solely relying on the ownership
pattern, we classify all newly deployed smart contracts in a time window of
two months in summer 2022 (891 170 contracts in total). We consider all smart
contracts that export functions using Ethereum’s Application Binary Interface
(ABI). Among the contracts which do not export any function, we consider all



Detecting Privileged Parties on Ethereum 5

20 25 30

June 2022
5 10 15 20 25 30

July 2022
5 10 15 20 25

Sh
ar
e
of

co
nt
ra
ct

ty
pe

s

5%

10%

15%

20%

100%

Fig. 3: Prevalence of the common ownership pattern in newly created smart
contracts (orange) using a signature-based detector. Our baseline (red) are all
contracts with known interfaces, such as ERC20. Gray contracts are likely multi-
sig wallets, but cannot be analyzed with the proposed method.

deployments with known bytecode.3 Those mainly include forwarder contracts
used to create fresh deposit addresses and upgradable proxy contracts. Figure 3
shows the results over time using a 3-day rolling window. Observe that only
5–10% of the relevant contracts implement the vanilla ownership pattern. The
simple approach sketched in the previous paragraph would thus fail for at least
85% of the cases where Ethpector can in principle extract some information.
Also the CryptoKitties contract used as motivating example in Section 2 could
not be analyzed with the ownership pattern heuristic. These numbers highlight
the need for a more sophisticated approach using symbolic execution.

3.2 Symbolic Execution

Symbolic execution [11] is a common technique in program analysis, often used
to find bugs or to generate test cases automatically. Symbolic execution tries to
explore all possible execution paths through a program in a systematic manner.
For that purpose, the input to the program is intentionally left unspecified (or
symbolic). On each control flow decision, the symbolic execution engine tries to
explore both branches. To avoid the exploration of unreachable paths, the engine
uses a satisfiability modulo theories (SMT) solver to find program inputs that
satisfy the path constraints leading to the branch. Paths for which no suitable
input is found are skipped.
3 For 36% of the deployed contracts we cannot infer a contract type. They
neither export functions nor belong to the our set of known bytecodes. The
database of known interfaces and bytecodes is curated from public sources,
e. g., https://eips.ethereum.org/, GitHub etc. A complete list of items can
be found at https://github.com/uibk-ethpector/ethpector/blob/main/src/
ethpector/classify/classification.py; function and event signatures are ob-
tained from the 4-bytes directory and etherface.io.

https://eips.ethereum.org/
https://github.com/uibk-ethpector/ethpector/blob/main/src/ethpector/classify/classification.py
https://github.com/uibk-ethpector/ethpector/blob/main/src/ethpector/classify/classification.py
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Fig. 4: Flow chart of Ethpector’s privileged function detection.

For our purpose we are interested in control flow decisions within a function
that depend on the caller, i. e., the sender of the message or transaction which
invokes the function.4 Moreover, we want to find control flow decisions where one
of the branches can only be reached if the caller is a privileged party either (a)
stored as constant in the binary or (b) read from a storage field. If we have found
such a control flow decision, we want to extract the address of the privileged
party. In case (a), we can read the encoded party directly from the binary. This
means we go back to the PUSH instruction that placed the constant on the stack.
In case (b), we need to extract the slot in permanent storage that holds the
address. This storage slot is encoded in the path constraint and can be obtained
by analyzing the structure of the path constraint. We use the path constraint
as well as information we gain from tainting all values introduced by loads from
permanent storage. We compare both values to avoid wrong extractions. Finally,

4 In principle, one could also look for the origin, i. e., the party who signed the trans-
action. To the best of our knowledge, almost all authorization decisions on Ethereum
are based on the message sender.
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to ensure that the extracted data is correct, we use the SMT solver to verify that
if we set the identified storage field to the current sender of the transaction then
we in fact can only reach one of the branches.

Figure 4 shows the proposed binary analysis pipeline as a flow chart. Our
Ethpector implementation uses Mythril5 as symbolic execution engine, which
in turn depends on Microsoft’s Z3 SMT solver. We refer to Appendix B for more
details on the concrete implementation and features of Ethpector. Observe that
we can run into cases where we detect the existence of a privileged party, but
fail to identify it. This can happen for multi-sig logic which conditions access
on general boolean expressions. In all other cases, the analysis pipeline returns
an address of the privileged party, or a storage slot. Given the extracted storage
slot, we can look up the current value using the getStorageAt function of an
Ethereum node. Repeating this look-up for different points in time on an archive
node lets us track changes of the privileged party.

4 Validation

We validate the proposed method along several dimensions. First and foremost,
we are interested in finding out if the method is able to correctly detect the
existence of privileged parties. Then, for each detected privileged party, we are
interested in whether it can be identified. Additional variables of interest are
code coverage and execution time, which is not negligible given that symbolic
execution tries to exhaustively explore all possible execution paths. Finally, we
compare to the closest related work.

A main challenge in the validation is the lack of task-specific ground-truth
data. The only reliable way to identify privileged parties independent of the pro-
posed method is to carry out the manual code review described in Section 1.
However, this depends on the availability of the source code. Since manual code
review does not scale, we have to keep the size of the ground-truth data lim-
ited. This, in turn, means that the results become more sensitive to the sample
selection. The naive approach to sample x% of all smart contracts deployed
on Ethereum in the past year is prone to biases given that the overwhelming
majority of deployments are proxy or forwarder contracts. Those are very short
and generally easy to analyze. Therefore, such a sample would over-estimate the
accuracy of the method while almost never testing its limits.

To overcome these issues, we compose a validation dataset of 41 non-trivial
smart contracts by combining two sources. We identify 28 relevant smart con-
tracts from the list of top gas consumers provided by EthGasStation.6 Starting
from the top, we take each smart contract for which Etherscan has source code.
If the smart contract is invoked via a proxy pattern, we do not only analyze
the proxy but try to include the contract on the address it resolves to. This
applies to seven cases. Since the so-obtained dataset was still biased towards
5 https://github.com/ConsenSys/mythril, Accessed: 07 June 2022
6 https://ethgasstation.info/json/gasguzz.json, Accessed: 13 May 2022. The
ranking aggregates gas use over 1500 blocks (roughly six hours).

https://github.com/ConsenSys/mythril
https://ethgasstation.info/json/gasguzz.json
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Table 1: Extraction results compared to our ground-truth data.
Name F in

Abi TP F FP F FN F TP O FP O FN O Owners/Slots

0 0x: Coinbase Wallet Proxy 14 6 0 0 1 0 0 1 / 1
1 1inch v4: Router 23 4 0 0 1 0 0 1 / 1
2 BendDao: Bend Token 16 0 0 0 0 0 0 0 / 0
3 BendDao: Bend Token Proxy 6 6 0 0 1 0 0 1 / 1
4 BosonRouter 33 8 0 0 1 0 0 1 / 1
5 Center: USD Coin 52 12 0 0 2 0 0 2 / 5
6 Center: USD Coin Proxy 6 6 0 0 1 0 0 1 / 1
7 CryptoKitties 59 17 0 0 5 0 0 5 / 6
8 EMOBUDDIES 43 13 0 1 1 0 0 1 / 1
9 ENS: ETH Registrar Controller 22 5 0 0 1 0 0 1 / 1

10 FloatingCats 43 11 1 1 1 0 0 1 / 1
11 Gem: GemSwap 2 41 19 0 0 1 0 0 1 / 2
12 GnosisSafe Mastercopy 1.1.1 31 0 0 0 0 0 0 0 / 0
13 KaijuFrenz: KAIJUFRENZ Token 54 14 0 0 1 0 0 1 / 1
14 LooksRare: Exchange 23 7 0 0 0 1 1 1 / 1
15 Merkle distributor 19 7 0 0 1 0 0 1 / 1
16 Merkle distributor Proxy 6 6 0 0 1 0 0 1 / 1
17 MetaPunk: Minter 45 13 0 4 1 0 0 1 / 1
18 OpenSea: Registry 21 6 0 0 1 0 0 1 / 1
19 OpenSea: Wyvern Exchange v2 36 5 0 0 1 0 0 1 / 1
20 Polygon Matic: Bridge Proxy 7 3 0 0 1 0 0 1 / 1
21 Polygon Matic: Bridge RootChainManager 41 0 0 0 0 0 1 0 / 0
22 Proxy to 34cfac64 ... 83fe3f5f 1 0 0 0 0 0 0 0 / 0
23 ProxyAdmin ? 9 5 0 0 1 0 0 1 / 1
24 RaidParty: Game Party 28 0 0 0 0 0 0 0 / 0
25 RaidParty: Game Party Proxy 6 6 0 0 1 0 0 1 / 1
26 Saitama Inu: SAITAMA Token 24 5 1 1 1 0 0 1 / 1
27 Shiba Inu: SHIB Token 13 0 0 0 0 0 0 0 / 0
28 StrongBlock: Service Proxy 6 6 0 0 1 0 0 1 / 1
29 Strongblock: Service V19 102 32 0 0 1 0 0 1 / 7
30 Strongblock: Service V20 107 29 1 0 1 0 0 1 / 7
31 SushiSwap: Router 25 1 0 0 1 0 0 1 / 0
32 TRIBE X: TRIBEX Token 61 21 0 1 1 0 0 1 / 1
33 Tether: USDT Stablecoin 33 10 0 0 1 0 0 1 / 1
34 Tornado.Cash: Router 12 2 0 0 2 0 0 2 / 0
35 Uniswap V2: Router 2 25 1 0 0 1 0 0 1 / 0
36 Uniswap V3: Positions NFT 39 1 0 3 1 0 0 1 / 1
37 Uniswap V3: Router 18 1 0 0 1 0 0 1 / 0
38 Uniswap V3: Router 2 40 1 0 0 1 0 0 1 / 0
39 Wandernauts: WANDERNAUT Token 39 11 0 3 1 0 0 1 / 2
40 Wrapped Ether 12 0 0 0 0 0 0 0 / 0

TOTAL: 1241 300 3 14 39 1 2
ACC, REC, F1: 0.99 0.96 0.97 0.98 0.95 0.96

proxy contracts, we balance it by adding selected popular contracts of several
diverse categories, such as multi-sig wallets, AdminProxy, and not to forget Cryp-
toKitties. Table 2 in the appendix lists details for all elements of the validation
dataset.

We generate ground-truth by downloading the source code for all contracts
and manually extracting all functions that require authorization. This caused
an effort of several working days by the Solidity expert on the research team.
Additionally, we use Etherscan’s read contract feature to collect the addresses set
in permanent storage that are used for the authorization decisions. We use this
manually curated data to evaluate the performance of our automated approach.

Table 1 reports the extraction performance of our method for each contract.
We evaluate the capability to detect the existence of a privileged party on the
level of functions. Column “F in Abi” lists the number of exported functions per
contract. The following three columns count true positives, false positives, and
false negatives, respectively. Overall, our method achieves 99% accuracy and
96% recall on a total of 1241 exported functions. Turning to the identification
of privileged parties, the numbers are naturally smaller as few contracts handle
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Fig. 5: Number of privileged functions (blue), owners (orange) and slots (red)
found depending on the execution timeout of the symbolic execution.

more than one privileged party. We measure 98% accuracy and 95% recall across
our validation dataset.

These results are obtained with a timeout of 600 seconds on a commodity
AMD Ryzen 7 Pro7 machine with 32 GB RAM. This runtime is not long enough
to achieve complete code coverage except for very short contracts. To evaluate
the sensitivity of the performance evaluation to the choice of the timeout, we
repeat the extraction with varying timeout and report key indicators in Figure 5.
Observe that the number of detected items plateaus after 300 seconds (and would
allow a rough approximation after just 60 seconds). Likewise, the performance
metrics (here: F1-scores) are largely insensitive to the timeout once it exceeds
one minute. While this is still too slow to be attractive for realtime analysis of all
deployed smart contracts, it is sufficiently fast for the exploration of governance
structures in selected parts of the ecosystem. Note that the mean code coverage
is far below 100%. The nonetheless good performance takes advantage of the
fact that authorization decisions typically appear early in the execution path
and a breadth-first search strategy. This means the symbolic execution engine
needs less time to reach the crucial instructions. Moreover, it is less likely that
we miss the relevant branches since the path constraints remain lean and are
unlikely to overwhelm the SMT solver. The mean code coverage of 65% for the
600 second timeout hides tremendous heterogeneity, with individual coverages
ranging between 20 and 100%. As plotted in Figure 6 for each element in our
validation set, the coverage is negatively correlated with the bytecode size, but
can still vary by a factor of two between smart contracts of the same size.

7 5850U at 1.90–4.40 GHz, 8 cores, 16 threads, and 16 MB cache.
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Fig. 6: Scatter plot of bytecode size and code coverage. Timeout 600 seconds.

To complete the validation, we compare Ethpector to a concurrent effort.
Ma et al. [12] propose a static analysis pipeline starting from source code to
find backdoors in token systems. (Recall that Ethpector is much more general.)
They discover 190 backdoors in deployed ERC20 contracts.8 We feed the 157
unique addresses on their list into our method. Ethpector correctly identifies
and extract (at least one) privileged party in 156 cases, suggesting a true positive
rate of 99%. The only contract where Ethpector failed9 to extract the privileged
party stores the administrator account in a mapping structure. While we cannot
calculate false positives from the biased data, we note that the presence of a
privileged party is generally suspicious in an ERC20 contract. For completeness,
in the appendix we show Ethpector’s console output for the SoarCoin smart
contract, the motivating example in [12]. The backdoor therein has caused a loss
of $6.6 million to an Australian firm in 2018. Ethpector exposes its privileged
functions zero_fee_transaction and drain.

5 Discussion

Next we discuss applications before we move on to limitations in Subsection 5.2.

5.1 Applications

Verifying Zero-Trust. Many smart contract projects start off with a central
controlling party and the promise to switch to “zero-trust” in the future. The
8 https://github.com/EthereumContractBackdoor/PiedPiperBackdoor/blob/
main/Backdoor_List.md, Accessed 18 Oct 2022.

9 Ethereum address 0xa821f14fb6394e82839f5161f214cacc90372453.

https://github.com/EthereumContractBackdoor/PiedPiperBackdoor/blob/main/Backdoor_List.md
https://github.com/EthereumContractBackdoor/PiedPiperBackdoor/blob/main/Backdoor_List.md
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transition from central control to “zero-trust” is typically conducted by setting
the owner to an address known not to be controlled by any party e. g., zero.
Ethpector can identify where in the storage of the smart contract the owners is
stored. With this information, changes in ownership can be tracked with the in-
formation from an Ethereum node. Our method does not require any knowledge
about the smart contract, such as known interfaces or self-reporting.

Figure 7 demonstrates this by plotting all changes of privileged parties for
all contracts in our validation dataset. Only one smart contract of our validation
dataset (the SAITAMA Token) changed its owner to “zero-trust” on 7 July 2021,
7 days after creation.10

Audits. Auditors are often tasked to verify the opposite of “zero-trust.” Com-
panies that offer services in the Ethereum ecosystem might want to declare
their smart contract operations as intangible assets on their conventional bal-
ance sheet. To attest that an entity actually “owns” a deployed smart contract,
auditors could verify if this is reflected in privileged access to managing functions
of the smart contract. Our method allows third parties to do exactly this in an
automated manner, i. e., without costly review of the source code.

Detecting Privileged Parameters. For all privileged functions detected with our
method, Ethpector can extract the storage slots to which the function writes.
Slots that are written by one privileged function and read by other (not privi-
leged) functions indicate the existence of a privileged parameter. The analysis
results for the SoarCoin contract in Fig. 8 (appendix) demonstrates this. The
function set_centralAccount is privileged and the only one to write into stor-
age slot 3, suggesting that it holds a privileged parameter. Access to the critical
function zero_fee_transaction, which reportedly enabled the scam, is con-
trolled by this slot.

Detecting Update Privileges. Ethpector also extracts calls and their call targets
from the binaries. This information in combination with the check for parameter
changes can be used to detect updatable proxies, the common way to keep smart
contract code maintainable (and break the immutability feature). More specifi-
cally, a smart contract with a privileged function to change an address field that
is in turn used to redirect calls is likely used to make the contract updatable.
Watching this address field over time allows us to track code updates. Note that
our method does not rely on knowledge about the exact update pattern used.

Address Clustering and Network Analysis. For many types of cryptoasset an-
alytics, including forensic investigations, it is useful to lift the unit of analysis
from the individual address level to the level of real-world entities. Address clus-
tering is concerned with inferring which addresses belong to the same entity.

10 The code for generating the figure can be found at https://github.com/uibk-
ethpector/ethpector/blob/main/experiments/privileged-parties/paper/
storage_evolution.py.

https://github.com/uibk-ethpector/ethpector/blob/main/experiments/privileged-parties/paper/storage_evolution.py
https://github.com/uibk-ethpector/ethpector/blob/main/experiments/privileged-parties/paper/storage_evolution.py
https://github.com/uibk-ethpector/ethpector/blob/main/experiments/privileged-parties/paper/storage_evolution.py
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Detecting privileged parties enables to automatically consider smart contracts
as well as their controlling accounts as one entity. Similarly, if the same party
is detected to have privileges in multiple smart contracts, they can be treated
as one conglomerate. Ethpector enables a range of applications to study de-
pendencies between smart contracts on the level of their governance structures,
potentially uncovering networks of virtual shell organizations.

5.2 Limitations

Obviously our approach has some limitations. We start with conceptual limits
before we discuss the most salient technicalities.

Conceptual. A common pattern to distribute the control over global parameters
of the system are governance tokens (e. g., Uniswap, MakerDAO). Voting pro-
tocols enable the token-holders to jointly make system-wide decisions. While a
concentration of tokens in a single party could effectively fulfill our definition of
a privileged party, we do not consider this problem here.

We also caution against premature conclusions when Ethpector detects a
privileged party. The existence of a privileged party does not always imply central
control. Exceptions may occur when the identified party is the address of a multi-
signature wallet. If such a wallet is realized off-chain, we cannot distinguish it
from any other externally owned account using blockchain data only.

Technical. Symbolic execution faces well-known limitations in practice: path
explosion, unbounded loops, and the NP-hardness of the SMT problem all require
tradeoffs, such as imposing timeouts and skipping paths [2].

The method as proposed fails to detect certain complex administration pat-
terns involving more than one owner (e. g., multi-sig). The challenging smart con-
tracts use advanced data structures in order to manage parties and assign roles
to them. While some of the structures could in principle be unrolled, Ethpector
skips them in the interest of avoiding false positives. This is because the data
structures resemble those commonly used to manage token balances. Traversing
them would incur the risk that many token functions could be falsely identified
as granting privileged access. After all, token holders are privileged parties com-
pared to non-holders; but this is not what Ethpector is designed to look for.
A particular challenging data structure are mappings (i. e., hash tables). Often
the address is used as key; and we cannot extract any value before knowing the
address we are looking for. As Ethereum nodes do not support enumerating all
keys, one would have to customize a node to keep track of all keys so that the
correct key–value pair can be known in the analysis. Ethpector handles these
cases by detecting the existence of a privileged party but fails to identify it.

Finally, our method inspects one smart contract at a time. It cannot resolve
authorization patterns that request the privileged party (or other access control
information) from other smart contracts using function calls. If this type of au-
thorization becomes more common, the method can be adapted to be aware of
common interfaces. This is easier to realize than executing inter-contract com-
munication symbolically.
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6 Related Work

This work connects to a number of research strands. We focus on the most
relevant ones.

Governance of Cryptocurrency Platforms. Azouvi et al. [1] explore the gover-
nance structure of Bitcoin and Ethereum by reviewing the community of con-
tributors to the respective public source-code repositories and discussion boards.
They find that only a small number of contributors make up for most of the dis-
cussions and code contributions. This suggests a rather centralized governance
structure at the level of the development workflow. The authors acknowledged
that the centralization seen in the source-code contributions does not directly
imply strong centralization of decision making in general. In particular cryp-
tocurrencies diversify control by having miners or validators as gatekeepers.

In contrast to [1], our work is not concerned with the governance structures
of the cryptocurrency platforms themselves, but the governance of user-defined
applications running on these platforms. Unlike platforms, smart contracts do
not have a built-in gatekeeper. The developers alone decide how to distribute
control. For example, a significant share of updatable smart contracts are con-
trolled by a single party [13]. This suggests that the governance structures on
the Ethereum application layer could be a lot more centralized than the one of
the underlying cryptocurrency platform.

Immutability and Code Updates. Fröwis and Böhme [9] study the immutabil-
ity of the control flow of smart contracts using static program analysis. Using
heuristics, they estimate that, in 2017, 40% of the code accounts on Ethereum
host program code that could change its some parts of its code by updating dy-
namic references. Medhi et al. [13] review approaches to update smart contract
implementations. They distinguish between retail and wholesale changes. The
former affect parameters; the latter replace the complete implementation. Their
measurements focuses on wholesale changes, in particular updates made possi-
ble through dynamic references between smart contracts. Between September
2020 and July 2021 they find that in almost 50% of the identified contracts, a
single externally owned account is authorized to update. More recently, Fröwis
and Böhme [10] explore a novel way to update code that became available on
Ethereum after the Constantinople platform upgrade in early 2019. Using a
heuristic indicator, they find more than 100k “potentially updatable” accounts.
However, only 41 accounts actually got updated using this method.

Our work is concerned with the more general task of identifying functions of a
smart contract that can only be executed by a privileged party. The most popular
form of code updates via dynamic references relies on privileged functions only
an authorized administrator account can call. Therefore, our method can be
applied to detect updatable code. While Ethpector cannot extract the indicators
used in [10], it is arguably more reliable in detecting the preconditions for such
updates than the heuristic approach. The most relevant precondition is whether
a SELFDESTRUCT instruction is reachable in the execution path.
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Backdoors in Token Systems. In concurrent work, Ma et al. [12] propose a static
analysis pipeline starting from source code and tailored to identify backdoors in
smart contracts implementing token systems. The authors develop detectors for
five common backdoors observed in the wild and evaluate their accuracy using
active fuzzing. All of the backdoors studied by them require the existence of a
privileged party. Although Ethpector cannot identify the exact conditions that
invoke a backdoor, it is capable of identifying privileged functions. Our method
requires bytecode only and is not limited to a specific type of smart contract.

7 Conclusion

We have proposed, implemented, and validated a method to automatically ex-
tract privileged parties from EVM binaries using symbolic execution. Our ar-
tifact, Ethpector, is available on GitHub11 under an open-source license. It
enables a range of applications in research and practice, including the verifica-
tion of claims about “zero-trust,” revelation of ownership structures, and support
for forensic analyses of networks of virtual shell organizations. While it cannot
replace a thorough code review, it can substantially speed up independent sanity
checks; or make them available to audiences who cannot perform a code review.

Future work could refine the detection of more complex authorization pat-
terns, notably boolean expressions involving multiple conditions and privileged
parties stored in mapping structures. Both should help to complete the picture
by eliminating the (still quite small) gray areas in Figure 3, where Ethpector is
not yet applicable.
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A Validation Data

Table 2: Composition of our validation dataset.

Name Address Proxy
Implementation

Code
Cover-

age
Type

0 0x: Coinbase Wallet Pro... 0xe66b31678d6c16e9ebf358268a790b763c133750 – 0.82 proxy
1 1inch v4: Router 0x1111111254fb6c44bac0bed2854e76f90643097d – 0.46 exchange
2 BendDao: Bend Token 0x02863c14603c3b157379999f567ddece151e9153 – 0.73 token
3 BendDao: Bend Token Pro... 0x0d02755a5700414b26ff040e1de35d337df56218 0x02863c ... 151e9153 0.96 proxy
4 BosonRouter 0x0a393aef6dbcd7e7088acf323f9d28b093b9ab5a – 0.60 exchange
5 Center: USD Coin 0xa2327a938febf5fec13bacfb16ae10ecbc4cbdcf – 0.81 token
6 Center: USD Coin Proxy 0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 0xa2327a ... bc4cbdcf 0.98 proxy
7 CryptoKitties 0x06012c8cf97bead5deae237070f9587f8e7a266d – 0.75 token
8 EMOBUDDIES 0xc995756e8e6a319f209623d0c8f7629dc5636129 – 0.62 collectibles
9 ENS: ETH Registrar Cont... 0x283af0b28c62c092c9727f1ee09c02ca627eb7f5 – 0.66 ens
10 FloatingCats 0xa514ede519870c62d35130ca18e4134e86244255 – 0.60 collectibles
11 Gem: GemSwap 2 0x83c8f28c26bf6aaca652df1dbbe0e1b56f8baba2 – 0.54 collectibles
12 GnosisSafe Mastercopy 1... 0x34cfac646f301356faa8b21e94227e3583fe3f5f – 0.49 multisig
13 KaijuFrenz: KAIJUFRENZ ... 0xc92090f070bf50eec26d849c88a68112f4f3d98e – 0.52 collectibles
14 LooksRare: Exchange 0x59728544b08ab483533076417fbbb2fd0b17ce3a – 0.41 exchange
15 Merkle distributor 0x7529834a5974e2d5fff3d0f0591e9a5ca2ca1619 – 0.84 batching
16 Merkle distributor Prox... 0x1b5d2904be3e4711a848be09b17dee89e6a5bc27 0x752983 ... a2ca1619 0.96 proxy
17 MetaPunk: Minter 0x67401149e3e88b10dd92821eb6302f4dee8191bc – 0.60 other services
18 OpenSea: Registry 0xa5409ec958c83c3f309868babaca7c86dcb077c1 – 0.64 proxy
19 OpenSea: Wyvern Exchang... 0x7f268357a8c2552623316e2562d90e642bb538e5 – 0.19 exchange
20 Polygon Matic: Bridge P... 0xa0c68c638235ee32657e8f720a23cec1bfc77c77 0x6abb75 ... 105fd5f5 0.95 proxy
21 Polygon Matic: Bridge R... 0x6abb753c1893194de4a83c6e8b4eadfc105fd5f5 – 0.51 other services
22 Proxy to 34cfac64 ... 8... 0xe24f4870ab85de8e356c5fc56138587206c70d99 0x34cfac ... 83fe3f5f 0.98 proxy
23 ProxyAdmin ? 0x1f0e8a86e398f0f2fd285a36d2f1ee85d6bbc9c5 – 1.00 proxy
24 RaidParty: Game Party 0x62e4760e59ce31865a09cfc7cdc27432eb4433db – 0.49 collectibles
25 RaidParty: Game Party P... 0xd311bdacb151b72bddfee9cbdc414af22a5e38dc 0x83d0c1 ... 1ac57fcc 0.82 proxy
26 Saitama Inu: SAITAMA To... 0x8b3192f5eebd8579568a2ed41e6feb402f93f73f – 0.64 token
27 Shiba Inu: SHIB Token 0x95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce – 0.96 token
28 StrongBlock: Service Pr... 0xfbddadd80fe7bda00b901fbaf73803f2238ae655 0xdcbf1e ... 9d5a41cf 0.96 proxy
29 Strongblock: Service V1... 0xc2899dfcb0a81b73e89e4a99cd24ab26d8a78295 – 0.53 other services
30 Strongblock: Service V2... 0x88f6ed8fb519612a03730e4b5a5c1581a7d0c305 – 0.54 other services
31 SushiSwap: Router 0xd9e1ce17f2641f24ae83637ab66a2cca9c378b9f – 0.34 exchange
32 TRIBE X: TRIBEX Token 0xff9981d2c6c6d612e03e4a32f5488e552eeae285 – 0.63 collectibles
33 Tether: USDT Stablecoin 0xdac17f958d2ee523a2206206994597c13d831ec7 – 0.86 token
34 Tornado.Cash: Router 0xd90e2f925da726b50c4ed8d0fb90ad053324f31b – 0.41 privacy
35 Uniswap V2: Router 2 0x7a250d5630b4cf539739df2c5dacb4c659f2488d – 0.36 exchange
36 Uniswap V3: Positions N... 0xc36442b4a4522e871399cd717abdd847ab11fe88 – 0.40 collectibles
37 Uniswap V3: Router 0xe592427a0aece92de3edee1f18e0157c05861564 – 0.54 exchange
38 Uniswap V3: Router 2 0x68b3465833fb72a70ecdf485e0e4c7bd8665fc45 – 0.41 exchange
39 Wandernauts: WANDERNAUT... 0x793daf78b74aadf1eda5cc07a558fed932360a60 – 0.67 collectibles
40 Wrapped Ether 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 – 1.00 token

TOTAL: 0.66

B Ethpector in a Nutshell

The source-code of Ethpector is publicly available and can be acquired from
GitHub.12 Ethpector’s main focus is the analysis and exploration of EVM com-
patible binaries. Given some binary or the on-chain address the tool provides an
annotated view on the disassembled program. Currently, the tool supports two
static analysis techniques to extract data from the binaries. First, it implements
abstract interpretation to produce the reaching definitions for each position in
the program. The reachings are then used to construct the control flow graph
of the program. Additionally, the tool includes Mythril,13 a security analysis
tool for EVM-binaries. Ethpector uses Mythril’s symbolic execution engine to

12 https://github.com/uibk-ethpector/ethpector
13 https://github.com/ConsenSys/mythril, Accessed: 07 June 2022

https://github.com/uibk-ethpector/ethpector
https://github.com/ConsenSys/mythril
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annotate the binaries with e. g., privileged functions, logs and functions as well
as their parameters.

In addition to the capabilities to automatically extract data from EVM bi-
naries the tools integrates with several online sources to improve the analysis
workflow. It provides Etherscan integration to fetch smart contract code and
meta-data. Additionally, source-code can be fetched from Sourcify,14 a decen-
tralized platform to publish smart contract source-code. This enables quick an
easy access to source code, if available. To recover the public interface of a smart
contract even if source-code is not available Ethpector uses the local signature
lookup table provided by Mythril as well as the online services 4bytes and ether-
face.io.15 This enables the reconstruction of public interfaces of the binaries as
long as the function and event signatures are publicly known.

Notable features:

– Reconstruction of jump targets using data flow analysis and symbolic exe-
cution.

– Detection of known and standardize function interfaces.
– Html, TikZ and NetworkX privileged parties graph output.
– Identification of standard proxies and extraction of implementation contracts
– Extraction of calls and their parameters.
– Extraction of logs and their parameters.
– Extraction of storage reads and writes including their positions.
– Fully featured parser for function and event definitions and parsing of cor-

responding logs and inputs.
– Reconstruction of Solidity revert messages.

The code for the experiments conducted in this paper as well as the exact
configuration used, can be found in the experiment folder in the repository.
Figure 8 shows the output of the overview command line UI of Ethpector.16

C The Ownership Pattern

The most common pattern to encode privileged parties is called the ownership
pattern. Although, there exists no official standard to encode ownership, canon-
ical implementations are readily available in popular code libraries.17

The ownership pattern implements a simple function level authorization
structure. The owner can be changed via the changeOwner function. The owner
14 https://sourcify.dev/, Accessed: 07 June 2022
15 https://www.4byte.directory/ and https://www.etherface.io, Accessed: 07 June

2022
16 For address 0xD65960FAcb8E4a2dFcb2C2212cb2e44a02e2a57E. The code and entry

point for the overview UI can be found in the folder experiments/risk_report in
the repository.

17 https://docs.openzeppelin.com/contracts/2.x/api/ownership, Accessed 07 June
2022.

https://sourcify.dev/
https://www.4byte.directory/
https://www.etherface.io
https://docs.openzeppelin.com/contracts/2.x/api/ownership
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Fig. 8: Example output of the Ethpector console UI. The address under analysis
is the SoarCoin smart contract. Its privileged function zero_fee_transaction
is a backdoor that caused a loss of $6.6 million to an Australian firm [12].
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is stored in an dedicated slot in permanent storage.18 Functions that should be
exclusive to the owner are annotated with the modifier isOwner. This instructs
the compiler to insert the ownership check in the preamble of the function. If the
function is executed by a sender other than the current owner the transaction
reverts.

contract Owner {

address private owner;

event OwnerSet(address indexed oldOwner , address indexed newOwner);

// modifier to check if caller is owner
modifier isOwner () {

require(msg.sender == owner , "Caller is not owner ");
_;

}

constructor () {
owner = msg.sender;
emit OwnerSet(address (0), owner);

}

function changeOwner(address newOwner) public isOwner {
emit OwnerSet(owner , newOwner);
owner = newOwner;

}

function getOwner () external view returns (address) {
return owner;

}
}

Listing 1.1: Ownership pattern. The common form of defining privileged parties.

18 Note: The address of the storage slot is dependent on the storage fields defined earlier
in the contract.
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