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Abstract—Neural compression has the potential to revolu-
tionize lossy image compression. Based on generative models,
recent schemes achieve unprecedented compression rates at high
perceptual quality, but they compromise semantic fidelity. Details
of decompressed images may appear optically flawless, but
semantically different from the originals, making compression
errors difficult or impossible to detect. We explore the problem
space and propose a provisional taxonomy of miscompressions.
It defines three types of ‘“what happens” and has a binary “high
impact” flag indicating miscompressions that alter symbols. We
discuss how the taxonomy can facilitate risk communication and
research into mitigations.

Index Terms—neural image compression, miscompression, se-
mantic changes, forensics

I. INTRODUCTION

A turning point in the investigation of the 2013 Boston
Marathon bombing was a bystander’s cellphone photo that al-
lowed police to identify one of the suspects in a crowd [1] [2].
Remarkably, the relevant part of the image comprised just
0.2 % of all pixels. In this paper, we ask the question whether
digital images will continue to serve as reliable sources in a
future where neural compression becomes the default.

Neural image compression employs learning-based elements
in the image compression pipeline, achieving high perceptual
quality at unprecedented compression rates [3]. State of the
art schemes use generative networks to synthesize parts of an
image [4], [5]. However, a drawback of this approach is that
the synthesized details appear plausible and of high perceptual
quality, but may be semantically different from the original.

To illustrate this, Fig. 1 compares a small crop (0.4 %) of an
uncompressed image (left), to a version from the HiFiC neural
compression scheme [4] (middle), and the JPEG compressed
image at quality factor (QF) 20 (right). This factor was chosen
to match the compression rate in bits per pixel between
HiFiC and JPEG. While the neural compression retains clear
readability of the numbers, closer inspection reveals that they
differ: the upper row changes from 2264 — 7668 in the original
to 2254 — 7664 in the HiFiC reconstruction. We confirmed
that not only human observers, but also Google’s Cloud Al
optical character recognition came to this conclusion. Given
the high apparent quality of the image, observers unaware of
its processing history might be inclined to fully trust the image
and its semantic content. By contrast, the visible compression
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(a) Lossless original
(4.1 MB, 11.90 bpp)

(b) Neural compression (c) JPEG QF 20
(159 kB, 0.46 bpp, [4]) (158 kB, 0.46 bpp)

Fig. 1. State-of-the-art neural compression schemes can alter the semantic in
details of the decompressed images. The high fidelity and the lack of visible
compression artifacts make false reconstructions look more authentic than
JPEG, which introduces visible distortion. (Crop of image 0831 of DIV2K [6],
0.41% of the original.) All figures are best viewed on screen and magnified.

artifacts in the JPEG image not only make the numbers
difficult to read, but also signal low reliability and dissuade
users from interpreting the numbers with confidence.

In this paper, we propose the term “miscompression” to
describe semantic changes resulting from lossy compression.
This new!' phenomenon arose with neural compression and
deserves the attention of researchers and forensic practitioners.
To facilitate the conversation, we develop a taxonomy of
miscompressions based on the explorative visual inspection
of three benchmark datasets, examining five different neural
compression schemes at different quality settings. The exam-
ples used for illustration in this paper are produced using
two schemes of the latest generation. We derive implications
for forensics and society at large, and outline objectives for
research into mitigations.

We emphasize that all authors of recent neural compression
schemes generally acknowledge the risk of hallucinations,
warn against using their schemes for critical applications [4,
p- 10], and occasionally point to examples of text becoming
unreadable. However, miscompressions take many forms and
pose a risk to society if left unaddressed. We see our work as
a first step towards solutions.

The paper is structured as follows. Section II introduces
the principles of neural compression by comparing it to the
JPEG pipeline. Section III defines miscompressions, describes
our empirical approach, and presents the proposed taxonomy
using examples. Section IV discusses implications and outlines
a research agenda. Section V concludes our paper.

IThe closest related work we are aware of is an attempt to introduce copy-
evident marks into images which only appear after JPEG compression [9].
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Fig. 2. Comparison of the conventional JPEG compression (top) and the neural compression schemes used in this paper (bottom). Elements with rounded
corners are CNNs trained on datasets and used in inference mode during encoding and reconstruction.

II. PRIMER ON NEURAL COMPRESSION

The top row of Fig. 2 shows the key components of the lossy
image compression and decompression pipeline. The first com-
ponent transforms an input image from the spatial domain
into a domain where pixels are decorrelated and the variance
is concentrated in fewer coefficients. A useful property of com-
mon transformations is that the distribution of the coefficients
can be approximated parametrically. The second component,
quantization, is a deliberately lossy process. It maps a range
of values to a single discrete value. The quantization steps
can be adjusted according to the relevance of each coefficient
for the reconstruction of the signal. The final component of
the compression pipeline is lossless entropy coding, which
approximates Shannon’s theorem [10] by encoding a sequence
of quantized values into a sequence of bits. The better the
input distribution is known, the tighter the approximation and
the shorter the resulting bitstream.

Over decades, JPEG [8] has been the most popular lossy
image compression scheme. It implements the transform by
the linear discrete cosine transform (DCT) [11] on non-
overlapping blocks of 8 x 8 pixels. The resulting coefficients
are then quantized by dividing them by frequency-specific
quantization factors and subsequent rounding to the nearest
integer. The quantized coefficients are arranged in zigzag order
and entropy-coded using run-length (RL) and Huffman encod-
ing [12]. The resulting image file contains the quantization
tables (QT), the quantized DCT coefficients, and the Huffman
tables. JPEG decompression reverts this sequence of steps.

Neural compression replaces components of this pipeline
with learnable elements, typically deep convolutional neural
networks (CNN). This emerging field has its own jargon.
Encoding and analysis are used to describe compression. Re-
construction and synthesis denote decompression (cf. Fig. 2).

Learning the transform promises that irrelevance in the input

signal can be isolated better in the so-called latent space
than with known structured transformations, such as block-
wise DCT. While the networks have shown to derive basis
functions similar to those in linear transforms [13], nonlinear
transforms offer better adaptation to varying data distributions
and can be optimized for specific distortion metrics. The
loss function used for training has two terms: distortion and
rate. By weighting these terms, different tradeoffs between
image quality and file size can be achieved. Finding the right
distortion metric for neural compression is an active field of
research [14], [15]. Once trained, the weights are stored in the
encoder and decoder. The CNNs are used in inference mode
for the encoding and reconstruction of images.

Quantization in neural compression typically involves
rounding and truncation [16], [17]. Unlike JPEG, it does not
use and transmit QTs. The quantization step size is controlled
by the scaling in last layer of the transform CNN and thus
learned. Therefore, neural compression schemes commonly
require a separately trained model for each target quality.

Also, entropy coding requires modifications. A drawback of
learning a transform is the lack of a statistical model of the
latent space. Here, the answer to machine learning is machine
learning. The distribution of the latent space is modelled with
a trained auto encoder. The prediction of this model is used
to parameterize an arithmetic encoder. As the distribution is
data dependent, the latent space of this prediction model must
itself be transmitted to the decoder to enable reconstruction.
Ballé et al.’s scale hyperprior construction [7] is the basis of
the two schemes evaluated in this work.

HiFiC [4] and CDC [5] improve on previous approaches
to neural compression by using generative models for the
inverse transform. HiFiC uses a generative adversarial net-
work (GAN). GANs are trained with a rivaling discrimina-
tor network that regularizes the generator network towards



producing outputs of high perceptual quality [18]. To control
the content of the reconstruction, the generator is conditioned
with the latent representation of the encoded image. CDC
implements a diffusion model [19] for the inverse transform.
It uses the latent representation to condition the denoising
diffusion probabilistic model [20] (DDPM). Both schemes
are trained end-to-end, allowing the variational autoencoder
in the transform component to learn how to turn an input
image to a condition. The rate estimate of the loss function is
taken from the hyperprior model and the distortion estimate
is a weighted sum of the perceptual loss and the mean
squared error between the input and the reconstructed image.
Increasing the weight of the perceptual metric gives the model
the flexibility to deviate from the input signal and “make
up” details during reconstruction. This enables high perceptual
quality at unprecedented compression rates, but compromises
semantic fidelity.

The digital image forensics community has only recently
started to address the impact of neural compression: Berthet
et al. revisit copy-move forgery detection [21] and source
social network identification [22], Bergmann et al. use traces
in the frequency and spatial domain for detection [23], [24],
and Chen et al. show a vulnerability of different neural
compression schemes to adversarial perturbations in the input
image [25]. Jalilian et al. propose CNNs to compress biometric
images [26]. However, to the best of our knowledge, nobody
has yet investigated semantic changes and their implications.

III. MISCOMPRESSIONS

Semantic interpretation is the understanding of a perceived
scene by applying domain terminology, i.e., semantic con-
cepts [27]. It is carried out by a human observer and is heavily
influenced by their prior semantic and conceptual knowledge
of the domain [28]. The semantic meaning of a scene or an
image is the result of semantic interpretation.

We define miscompressions as reconstruction errors that
occur when there is a discrepancy between the semantic mean-
ing of an original image (detail) and its reconstructed version
after neural compression. As a test, we require that a human
observer asked to verbally describe the relevant part of the
image would come up with a different description. Note that
this definition applies to entire images as well as individual
image details. Digital images used as evidence in forensic
investigations often capture relevant details unconsciously, as
can be seen from the Boston Marathon bombing example.
Such photographs often preserve details that serve as objective
representations of reality. Consequently, forensic investigators
typically focus on analyzing the semantic meaning of specific
image details, such as objects or individuals in the background,
rather than interpreting the semantics of the entire image.

Miscompressions are a new phenomenon, requiring a pre-
cise terminology to describe, mitigate, or ultimately avoid
them. This paper takes a first step in this direction and
proposes a provisional taxonomy, systematically derived with
three key objectives in mind. First, the taxonomy should facil-
itate research into the risks posed by miscompressions. Distin-
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Fig. 3. Category AMPLITUDE: Reconstructions differ in the amplitude of
spatial frequencies in the signal, affecting attributes such as brightness, color
saturation, and the intensity of high frequency components.

guishing between different forms of reconstruction errors that
lead to miscompressions allows us to measure their prevalence,
and compare compression schemes and the optimization met-
rics used. Second, it should facilitate research towards making
neural compression safer. While ideal compression schemes
would be completely immune to miscompressions, it is un-
certain whether this is achievable at competitive compression
rates. However, confidence in neural compression would be
greatly improved if it could be ensured that certain types of
miscompressions are extremely unlikely. The third intended
application of our taxonomy is to deal with the remaining
risk in practice. It should allow forensics experts to explain
miscompressions using references to scientific evidence in
order to convince a judge or jury.

A. Method

Our approach is exploratory. We focus on five relevant
neural compression schemes [4], [5], [7], [17], [29], compress
the test images of three widely-used benchmark datasets,
CLIC2020 [30], DIV2K [6], and Kodak [31] (full dataset),
and manually inspect the reconstructions of a total of 552



images to identify miscompressions, using difference images
for guidance, where necessary.

We have observed miscompressions in all tested schemes,
but decided to shift our focus to HiFiC [4] and CDC [5].
These schemes employ generative networks and stand out,
as their reconstructions are of such high fidelity that they
appear deceptively authentic. We use the pre-trained HiFiC
model with 180 million parameters for the three available
compression intensities high, mid, and low,> and the pre-
trained X'-parameterization model of CDC with 54 million
parameters for the widely-adopted LPIPS loss at weights 0.0
and 0.9.> We varied the noise seeds for CDC and found that
miscompressions prevailed.

B. Taxonomy

At a high level, our taxonomy separates the signal process-
ing perspective (“What happens?”’) from the semantic impact
(“How bad is the misinterpretation?”’). Based on the apparent
transformation of the signal, we define three categories. To
illustrate each category we provide examples, cropped from
compressed images of three datasets, and specify the compres-
sion model used, the bpp of the compressed image, the pixel
dimensions of the original image, and the crop, as well as the
percentage of the original represented by the displayed crop.
The selected examples illustrate the characteristics of each
type of miscompression. In practice, many miscompressions
exhibit combined effects of multiple types.

a) AMPLITUDE: refers to reconstructions that differ in
the amplitude of spatial frequencies in the image signal, such
as changes in brightness, color saturation, or intensity of
high frequency components. Attenuation seems to be more
common, although we cannot rule out amplification. Unlike
global signal processing operations, these effects tend to be
local and content-dependent. Objects that we have found to be
particularly susceptible to this type of miscompression include
lights, colors of eye, hair, and skin, as well as birthmarks,
and tattoos. Attenuation can result in altered colors or “disap-
pearing” objects. Semantic changes occur when the amplitude
carries meaning, as illustrated in the examples in Fig. 3. In the
top row, the fact that the car was braking, as indicated by the
brake lights, is lost in the reconstruction. In the second row,
a reconstructed watch appears to be turned off but is actually
on and displaying the time. In the third row, the reconstructed
image of a church tower does no longer include the Christian
cross. In the bottom row, the reconstructed image of a park
does not include the people present in the original image.

b) GEOMETRY.: refers to reconstructions with geometric
transformations such as translations, rotation, scaling, and
shearing. This includes locally shifted shapes, dissolved con-
tours, and imperfect representations of 3D scenes in 2D pixel
matrices. Semantic changes occur when the geometry of an
object carries semantic meaning, as illustrated in Fig. 4. The
top row shows a reconstruction of a flag that could be mistaken

2HiFiC: https://github.com/tensorflow/compression/tree/master/models/hific
3CDC: https://github.com/buggyyang/CDC_compression
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Fig. 4. Category GEOMETRY: Reconstructions contain geometric transfor-
mations, such as translation, rotation, scaling, and shearing, including shifted
shapes and dissolved contours. (The top image illustrates the level of detail
at which miscompressions occur. A grid was added to the middle crop.)

for graffiti on the wall in the background. The direction of the
nose and chin of the person’s profile in the second row is
altered and differs from the original. The bottom row shows
a leaf in the foreground that looks like a crack in the floor
after reconstruction. Other susceptible objects, not illustrated
here, include shadows and reflections. Semantic changes occur
if the direction of a shadow changes and suggests a different
positioning of the object casting the shadow, or if an object that
is placed in front of a reflecting body of water or glass appears
to be part of the reflection. This has implications for forensic
methods that exploit inconsistencies in lighting direction and
shadows for the detection of image manipulations [32, p. 14].

c) SHAPE: refers to reconstructions that differ in shape,
potentially caused by biases in the retrieval augmentation
process. Semantic changes occur when the shape of an object
conveys a semantic meaning, as illustrated in Fig. 5. The top
row shows a cropped image of a camera lens. The change
in shape causes the number 8 in the original image to be
mistaken as the number 6 in the reconstruction. In the bottom
row, the shape of direction-specific traffic lights changes in the
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Fig. 5. Category SHAPE: Reconstructions contain changed contours.

reconstruction from arrows to round lights. This results in a
change of semantic meaning, as a round green light typically
indicates that drivers can proceed in any direction.

Although we have observed several instances of altered
textures, we do not consider them as a distinct type for now
because the alterations did not align with our definition of
miscompressions, i.e., changes in semantic meaning. However,
texture changes have been reported in the super-resolution
literature [33, p. 25789], and we retain it as a potential
extension to our taxonomy.

To classify the potential semantic impact of miscompres-
sions across all categories, we define the SYMBOL modifier.
The consequence of miscompressions is elevated when the
affected objects portray symbols, i.e., signs that carry specific
meaning to human observers within a given social and cultural
context [34]. Examples of symbols include letters, numerals,
and signs, as well gestures, body adornments (e.g., religious
jewelry or clothing, wedding rings, etc.), traffic signs and
lights, watch hands, logos, tattoos, graffiti, etc. This list is not
exhaustive, and identifying a SYMBOL is subjective and can
be challenging, especially without knowledge of the cultural
and societal context of the captured scene. When symbols
are involved, small changes in amplitude, geometry, or shape
can completely alter the semantic meaning. For instance, the
miscompression of a plant in the bottom row of Fig. 4 is likely
harmless, whereas missing jewelry, as shown in Fig. 6 could
lead to discord.

While screening our data, we have made a number of note-
worthy qualitative observations. First, we found that miscom-
pressions commonly occur in small image details (see top row
in Fig. 4), and a single image can contain multiple instances
of miscompressions. Notably, not every image contains mis-
compressions. Images that depict single large objects against
flat backgrounds are less susceptible. Moreover, we find that
CDC is more likely to visibly destroy text, which reduces the
risk of misinterpretation of incorrectly reconstructed text. In
general, miscompressions occur seemingly unpredictably, and
are difficult to distinguish from authentic image details.
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Fig. 6. Miscompression of symbols such as body adornments or religious
jewelry increase the risk of semantic misinterpretation.

IV. DISCUSSION

In this section, we briefly reflect on the decisions that have
shaped our taxonomy, then outline how it can be applied,
before discussing the wider implications of miscompressions
and closing with selected avenues for future research.

The definition of miscompressions based on textual descrip-
tions is naturally subjective. It depends on the observer with
their experience and on the language, which defines concepts
based on culture. Intersubjectivity can be improved by asking
multiple observers [35]. The language dependency aligns the
definition with relevance in the given cultural context.

The proposed taxonomy of miscompressions is a first qual-
itative step towards mitigations. The next step is to apply the
taxonomy for the annotation of a larger dataset. This will
pave the way towards quantifying the prevalence of miscom-
pressions and identifying influencing factors with statistical
methods. Importantly, such a dataset could be used to train
models that detect and classify miscompressions, removing
the human from the loop and allowing even greater scale.

Also image-to-text models can be useful tools to this end.
To explore this option, we asked ChatGPT 4.0 to describe the
original as well as the reconstructed image of the church tower
in Fig. 3. We presented it with a 256 x 256 crop (bigger than
in Fig. 3) that included the lower part of the tower and roofs
of houses. ChatGPT’s description changed from “The image
depicts a church steeple with a cross at the top, situated in
a mountainous area. [...]” for the original image to “The
image appears to be of a church steeple or a spire set against
a mountainous backdrop. [...]” But this approach did not
work for all of our examples. For instance, there was no
difference in the description of the watch in Fig. 3. Using
targeted object recognition methods to identify specific cases
of miscompressions appears more promising, e.g., the use of
optical character recognition to identify miscompressed text.

Automatic detectors can be implemented as a safety net at
encoding time to catch potential miscompressions. This would
allow an increase in the number of bits allocated to areas of the
image where miscompressions loom. The next step would be
to use annotations of miscompressions as part of the training
loss metric in order to harden future neural compression
schemes against miscompressions. Our taxonomy can be used
to tailor these metrics to the types of miscompressions that
should be avoided in a particular application, for example
humans in the surveillance of public places and license plates
in traffic surveillance. Conversely, neural compression could



be tuned to deliberately cause miscompressions of, say, human
faces as an integrated privacy-enhancing technology [36]-[38].

While research should strive to avoid miscompressions
entirely, in the meantime it is crucial to deal with the ex-
isting risk in practice. It is imperative to acknowledge the
existence of miscompressions and explain the associated risks
of misunderstandings and false accusations to end users of the
technology. Neural compression is not ready for use in safety
and security critical applications, such as public surveillance
or autonomous driving. The benefit of bandwidth savings is
disproportionate to the risk of wrongful convictions and poten-
tially fatal accidents. Worryingly, surveillance and autonomous
driving are mentioned prominently in the motivation for the
upcoming JPEG Al neural compression standard [39, p. 104].
In less critical applications, the use of neural compression
should be documented. Suitable annotation could be stored in
image metadata, where professionals, such as photo journalists
and forensic investigators, can find and interpret them. A
quantitative perceptual metric of miscompressions, similar to
the metric for photo retouching [40], could be used in image
captions, visible watermarks, or icons, and inform consumers
about the potential presence of miscompressions. Reliable
methods to detect neural compression are needed to enforce
such policies [23], [24]. Interesting open research problems
remain: Is it possible to detect instances of miscompressions
in reconstructed images without access to the original? Can
we develop forensic methods to distinguish uncontrolled mis-
compressions from malicious manipulations?

V. CONCLUSION

To our knowledge, this is the first study that compares
multiple neural compression schemes for their susceptibility
to produce semantically different reconstructions. We raise
awareness of this novel problem in forensics, propose a provi-
sional taxonomy of what we call miscompressions, and support
it with existential evidence. We hope that as this taxonomy
develops, it will enable quantitative studies of automated
detection, prevalence, influencing factors, and mitigations.
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