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ABSTRACT

JPEG image forensics investigates the authenticity and ori-
gin of compressed images. Many established methods rely
on assumptions about the statistical distribution of quantized
discrete cosine transform coefficients. However, JPEG imple-
mentations that use trellis quantization, such as mozjpeg, pro-
duce images that challenge these assumptions. In this study,
we demonstrate that artifacts resulting from trellis quantiza-
tion can compromise the reliability of established forensic
methods and cause false alarms for innocuous images. We
address this issue by presenting methods to detect trellis ar-
tifacts and validating their robustness in scenarios commonly
encountered in forensic analyses.

Index Terms— trustworthy image forensics, steganaly-
sis, trellis quantization, mozjpeg

1. INTRODUCTION

Trellis quantization [1] addresses the rate-distortion problem
in data compression by finding the path through a trellis struc-
ture that minimizes a cost function. This cost function bal-
ances the size in bits needed to encode a coefficient value
against the distortion introduced by quantization. By evaluat-
ing the cumulative cost of different paths, trellis quantization
identifies the sequence of quantization steps that results in the
most efficient compression with minimal loss in quality. Trel-
lis quantization is particularly effective in the compression of
transform coefficients, such as those obtained from the Dis-
crete Cosine Transform (DCT) in video [2] and image com-
pression [3].

Mozjpeg [4] is a popular JPEG compression library that
implements a variant of trellis quantization by default to
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Table 1: State-of-the-art steganalysis models misclassify in-
nocent cover images if they are unaware of trellis artifacts.

Detection performance

Embedding libjpeg–turbo mozjpeg

Baseline acc. FPR FPR

nsF5 [10] 99% 1% 99%
UERD [11] 93% 4% 43%
J-UNIWARD [12] 91% 8% 94%
ImageNet-pretrained, 32 batch size, 0.25 dropout rate, 0.0001 learning rate,
Adam, QF 75, 0.4 bits per non-zero AC coefficients (bpnzAC), ALASKA2.

achieve reduced file sizes. Specifically, it employs a per-
ceptual model that accounts for the additional distortion
introduced by changing coefficients to values with shorter
variable-length encodings.

These modifications have been found to cause characteris-
tic artifacts in the DCT coefficient distribution of compressed
images [5]. While such artifacts can be exploited in image
forensics to fingerprint the JPEG implementation [6], they
might pose challenges to other forensic applications if they
rely on assumptions about the distribution of quantized DCT
coefficients.

In recent years, statistical learning has gained popularity
in multimedia forensics [7]. However, while machine learn-
ing detectors achieve high performances, they are known to
be sensitive to training-test mismatches.

Table 1 demonstrates the detrimental effects of unad-
dressed trellis artifacts on the detection of image steganogra-
phy. Similar to related work [8], we train three EfficientNet-
B0 detectors [9] on cover and stego images compressed with
libjpeg–turbo, a widely used JPEG compression library that
does not implement trellis quantization. The left and center
column in Table 1 show the baseline accuracy and the false
positive rate (FPR). Next, we evaluate the detectors’ sensi-
tivity to images compressed with mozjpeg. Up to 99% of all
innocuous cover images are now falsely classified as stego
images, as shown in the rightmost column. Both test sets use
the same images, DCT method, subsampling, and quantiza-
tion table (QT). The differences in the FPR can, therefore, be
attributed to the characteristics of mozjpeg’s trellis quantiza-
tion.



In this paper, we analyze and quantify trellis artifacts
and determine characteristics in the frequency distribution of
quantized coefficient values. Leveraging these characteris-
tics, we build detectors for trellis artifacts based on analytic
modelling and statistical learning. The detectors are intended
to serve as forensic preprocessors and can help practitioners
that apply forensic tools, to make informed interpretations of
their results. The remainder of the paper is organized as fol-
lows: Section 2 describes processing steps specific to mozjpeg
and quantifies their effect on the image signal. Section 3 de-
scribes the proposed detectors, and Section 4 evaluates their
performance for in- and out-of-distribution scenarios. Sec-
tion 5 discusses our findings and their implications for the
research community before Section 6 concludes our paper.

2. MOZJPEG

Mozjpeg has recently attracted attention within the multime-
dia security community due to its changes in output images
(e.g., [13, 14]). The library implements several compression
optimizations to reduce file size and improve the perceptual
image quality, namely overshoot deringing, adapted QTs, trel-
lis quantization, and default progressive encoding with opti-
mized scan scripts and Huffman tables. The first three alter
the DCT coefficients, whereas the latter optimize the stream
encoding without altering coefficients. This section reviews
the background of the signal-based optimizations and investi-
gates their effects on coefficients in an isolated manner.

To quantify these effects, we use the image change rate,
i.e., the share of images with at least one changed DCT co-
efficient, and the average coefficient change rate, i.e., the
number of changed DCT coefficients normalized by the num-
ber of non-zero DCT coefficients. We use 10 000 never-
compressed images of size 512 × 512 randomly sampled
from ALASKA2 [15], the benchmark dataset in steganog-
raphy. As our reference, we compress these images using
mozjpeg v4.0.3 with all optimizations disabled. We then
selectively enable individual optimizations and measure the
image and coefficient change rates compared to our reference.
We do this for the quality factors (QFs) 50, 75, 80, 85, 90, 95,
and 100.

Overshoot deringing During JPEG compression, the DCT
converts blocks of 8 × 8 pixels into a frequency domain
representation. When blocks contain combinations of pixels
that cannot be exactly represented by the discretized cosine
functions, the DCT causes ringing at the upper (overshoot)
and lower (undershoot) value range, also known as the Gibbs
phenomenon [16]. During decompression, the JPEG decoder
clips the positive overshooting values to 255 and negative un-
dershooting values to 0. This results in visual artifacts known
as ringing artifacts. They typically appear around sharp edges
or text and are visible as alternating light and dark signals.

Starting in version 3, mozjpeg implements an overshoot
deringing algorithm that tackles the ringing of positively
overshooting pixels during compression [17, 18]. It enlarges
the upper bound of pixel values and deliberately moves over-
shoots outside the 8-bit range, hiding ringing waves from the
decoder. The allowed overshoot is based on the sharpness of
edges. The algorithm extrapolates the pixel in a block with
the highest value using Catmull-Rom splines.

Effect: 18% of all images from our dataset are changed
by the overshoot deringing algorithm. Less than 1% of the
DC and AC coefficients in those images are changed. The
change rates are largely independent of the QF.

The low change rates can be attributed to the dataset,
which contains photographs of natural scenes with few in-
stances of ringing. To highlight the effect of the image con-
tent, we repeat this evaluation on images that mainly consist
of text. Specifically, we collect 1 000 PDF documents 1 and
convert them to the TIFF format using the Python package
pdf2image with 300 dpi resolution. We center crop them to
512× 512 and compress with mozjpeg.

Effect: The deringing optimization now changes now
changes more than 92% of the images. The coefficient
change rate increases to 40%. Again, the change rates are
largely independent of the QF.

Quantization tables Libjpeg and libjpeg–turbo (with one
exception [19]) use the QTs for luminance and chrominance
components as defined in Annex K of the JPEG standard [20].
While supporting several QTs, including the standard tables,
mozjpeg implements stronger quantization by default and uses
specific QTs [21]. To measure the change rate in images us-
ing mozjpeg’s specific QTs, we compare them to images com-
pressed using the tables defined in the standard.

Effect: We observe changes in all images except for QF
100, where all entries of the QT are 1 and no images are
changed. The AC change rate is between 49% and 60% for
the tested QFs. We observe no changes in DC coefficients.

Trellis quantization Mozjpeg’s trellis quantization aims to
improve the rate–distortion tradeoff after an initial quantiza-
tion step for each 8× 8 coefficient block. It uses a perceptual
model to calculate the distortion implied by reducing non-
zero DCT coefficients to values of shorter bit sizes. Follow-
ing [5], we denote y∗j and y∗∗j as the coefficient value at sub-
band j before and after trellis quantization, respectively. We
define the set

C = {±(2k − 1) : k = 1, . . . , 15}, (1)

which leads us to the candidate values for a given y∗j ,

Cj = {c ∈ C : |c| < |y∗j |} ∪ {y∗j }. (2)

1https://github.com/tpn/pdfs

https://github.com/tpn/pdfs
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Fig. 1: Candidate values (orange) are amplified in the coef-
ficient histogram of images compressed with trellis quantiza-
tion. (Data for AC subband 1, compressed with QF 90.)

Moreover, we define the set of outer neighbors

C++ = {±2k : k = 1, . . . , 15}. (3)

For a given y∗j , the algorithms evaluates the cost implied
by replacing y∗j with any c ∈ Cj , weighs the additional distor-
tion against the bits saved by shorter encoding, and sets y∗∗j
to the c with the lowest cost.

Effect: For all QFs, more than 99% of all images contain
changes. The average change rate over all AC coefficients is
between 10% and 18% for the measured QFs, with a decreas-
ing trend for higher QFs. The opposite trend is observable for
the change rate of DC coefficients, which is constant below
5% for QFs up to 90 and exceeds 10% at QF 100.

Figure 1 shows the distribution of quantized AC coeffi-
cients after trellis quantization. For natural images, the co-
efficient distribution can be approximated by Laplacian dis-
tributions [22]. Observe, that this is not the case for images
compressed with trellis quantization. Here, the probability
mass increases for bins of candidate values and decreases for
their outer neighbors, the pair of which we call candidate
pairs.

Note that the effect of trellis quantization is limited when
recompressing previously compressed images. We demon-
strate this in a simplified example: Let yj = 540 be an un-
quantized coefficient value and qj = 72 the quantization fac-
tor. Quantization divides yj by qj to 7.5 and rounds to the
nearest integer y∗j = 8. During decompression y∗j gets de-
quantized by y∗j × qj , resulting in y′j = 576, which is now
evenly divisible by qj . This prevents trellis quantization from
modifying the rounding in a direction of fewer bits. In reality,
multiple rounding operations during de- and recompression
influence the effectiveness.

In [23], the authors uncover the quantization factor by
searching for two local minima in the quantization error of
recompressed images. It seems intuitive to follow their ap-
proach for the detection of trellis quantization and recompress
an image with and without trellis quantization before com-
paring the magnitude of artifacts in the recompressed images.
However, as the effectiveness of trellis quantization is limited
in previously compressed images, this approach is unsuitable
for our means.

3. DETECTORS

In this section, we propose methods based on analytic mod-
elling and statistical learning for detecting trellis artifacts in
the distribution of quantized DCT coefficients. We use coef-
ficients of the first eight AC DCT subbands (in zigzag order)
with values i ∈ I = {−32, . . . , 32}. This ensures that our
methods generalize to low QFs, where bins with higher abso-
lute values are often unpopulated. Without loss of generality,
we consider i as an absolute value and denote the outer neigh-
boring coefficient value as i+ 1.

To construct the dataset for the detection of trellis arti-
facts, we use the same sample of 10 000 never-compressed
images from the ALASKA2 dataset and compress with
mozjpeg v4.0.3 with default settings (4:2:0 subsampling,
DCT ISLOW, mozjpeg’s QTs, progressive encoding). We
generate two datasets: The negative class are images where
all optimizations are disabled during compression. The pos-
itive class are images compressed with trellis quantization.
We use a 50 : 50 train–test split.

3.1. Analytic modelling

Our modelling based detection aims to analytically describe
the distribution of DCT coefficients of images compressed
with trellis quantization. In our measurements in Section 2
we find that for images from the ALASKA2 dataset and coef-
ficient values greater than 2, there are no changes further than
from c+ 1 to c. As changes for the absolute candidate values
2, 1, and 0, are more complicated, we exclude them from the
analytical models. We propose two approaches.

Calibration Trellis artifacts resemble in part those of pop-
ular steganographic embedding functions. For example, F5
[24] decrements the absolute value of DCT coefficients and
inflates the number of zeros. Previous work on the detection
of F5 uses calibration, which exploits the regularity of the
JPEG 8 × 8 grid. Calibration estimates the histogram of the
cover image by cropping a decompressed stego image by 4
pixels on each side and recompresses it using the QT of the
stego image [25]. The authors calculate the embedding rate
by comparing the histogram of the stego image and the esti-
mated cover histogram. We build on their approach and use
calibration to estimate the histogram of an image before trellis
quantization. Let Hi be the histogram bin of an image com-
pressed with trellis quantization holding the number of AC
coefficients with value equal to i, and Ĥi the respective bin
before trellis quantization, as estimated by calibration. We
define Hi := Ĥi + Ĥi+1 × αi, where αi is the relative fre-
quency of coefficients with value i + 1 being changed to i.
This results in

αi =
Hi − Ĥi

Ĥi+1

. (4)

αi of 0 refers to the same number of coefficients at bin
i before and after calibration, suggesting no changes caused
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Fig. 2: The relative frequency of coefficients being changed
to their inner neighbor. αi increases at candidate values for
images compressed with trellis quantization.

by trellis quantization. A positive αi and a negative αi+1, at
bins where i ∈ C, indicates the presence of trellis artifacts. As
shorthands we write αc for αi∈C and αc+1 for αi∈C++ . (See
Eqs. 1 and 3 for the set definitions.)

Figure 2 visualizes αi as the average over the training set.
For images compressed with trellis quantization, we observe
high values for αc and low values for αc+1. For images com-
pressed without trellis quantization, we observe a nearly con-
stant αi with no deviations at c or c + 1. The dashed line in
Figure 2 plots αi measured by comparing the same images,
compressed with and without trellis quantization, i.e., without
applying calibration. The difference between the dashed line
and αi measured for images compressed with trellis quanti-
zation is the calibration estimation error. Note that we do not
have access to this value when detecting trellis artifacts.

For our purposes we aggregate αi to αc and define

αC =
∑
i∈C

(αi − αi+1) (5)

as score to detect the presence of trellis artifacts. We use
Youden’s J̃ statistic [26] to select the optimal threshold based
on the classification performance on the training set.

Vampire neighborhoods In a second approach, we assume
a monotonous histogram and measure deviations at candidate
pairs with regard to their inner and outer neighbors. We call
this set candidate neighborhoods (ci−1, . . . , ci+2). We mea-
sure the deviation using a vampire score β,2 and define

βi = Hi −
Hi−1 +Hi+2

2
+Hi+1 −

Hi−1 +Hi+2

2
. (6)

Figure 3 visualizes βi as the average over the training set.
For images compressed without trellis quantization we ob-
serve a smooth βi. For images compressed with trellis quan-
tization we can see spikes at bins where i ∈ C. This indicates
an increased frequency of candidate values and a decreased

2The name originates from trellis artifacts in the plotted histogram, which
reminded the authors of inverted vampire teeth.
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Fig. 3: The average deviation of Hi from a monotonous pat-
tern within neighborhoods. βi increases at candidate values
for images compressed with trellis quantization.

frequency of their outer neighbors with regard to the candi-
date neighborhood. We aggregate βi to βc, simplify Eq. 6,
and calculate

βC =
∑
i∈C

(Hi −Hi−1 +Hi+1 −Hi+2) (7)

as score to detect the presence of trellis artifacts. Again, we
find the empirically optimal threshold using Youden’s J̃ .

3.2. Statistical learning

Statistical learning refers to the use of machine learning to in-
fer patterns from training images. We evaluate three different
types of features extracted from the DCT coefficients. The
features are then classified using an ensemble of Fisher linear
discriminant base learners [27], which is commonly used in
steganalysis [28].

Cartesian calibration Like before, we use calibration to
estimate the histogram before trellis quantization. Next, we
extract candidate neighborhood features of calibrated images
and use them together with the same set of histogram features
from the original images to train the classifier on the cartesian
product. There are ten candidate values in I. The resulting
features have dimensions of 4× 8× 10× 2 = 640.

Vampire neighborhoods As before, we train the classifier
on candidate neighborhood features, this time without carte-
sian calibration. The resulting features have dimensions of
4× 8× 10 = 320.

JRM features As a third approach, we use features ex-
tracted from an ensemble of JPEG Rich Models [29] (JRM)
with 11 255 dimensions to train a classifier. JRMs model
different types of dependencies between adjacent coefficient
subbands.

4. RESULTS

Table 2 reports the accuracies on the test set. Both analytic
detectors perform well for high QFs but degrade for low QFs.
The decline in accuracy for low QFs is also visible, albeit less
prevalent, for the detectors based on statistical learning. They



Table 2: Detection accuracies of proposed trellis detectors.

Analytic detectors Learning detectors

QF cal. vamp. cal. vamp. JRM

100 95% 99% 100% 100% 100%
95 84% 92% 99% 99% 100%
90 80% 88% 99% 98% 100%
85 75% 82% 99% 97% 100%
80 72% 79% 98% 96% 100%
75 71% 76% 98% 96% 99%
50 72% 75% 97% 93% 98%

all achieve high accuracies. The detector trained on JRM fea-
tures reaches near-perfect test accuracy, also for low QFs.

4.1. Robustness

Out-of-distribution scenarios occur when the distribution of
coefficients in test images differs from that in the training im-
ages. In this section, we report the robustness in the following
scenarios: detectors tested on images of a different QF than
the training images, detectors tested on stego images while
trained on covers, detectors tested on double-compressed
images while trained on single-compressed, and images that
were compressed with the deringing optimization.

Unseen QFs We find that the detectors generalize well
to higher QFs. For lower QFs, the performance decreases
slightly due to missed detections. The detector based on JRM
features is an exception. It does not generalize well to lower
QFs, especially when trained on QFs above 90. For all
following out-of-distribution experiments, we focus on our
detectors based on vampire neighborhoods (without calibra-
tion). The positive class ⊕ contains images compressed with
trellis quantization, and the negative class ⊖ contains images
compressed without trellis quantization. We apply process-
ing operations to either the positive or the negative class and
report the effect on the performance in Table 3. The reference
is the in-distribution performance on images of QF 90.

Steganography In Section 1, we show that a state-of-the-
art steganalysis model fails when facing images containing
trellis artifacts. Now we investigate the opposite scenario,
namely whether our trellis artifact detectors are robust to
steganography. We evaluate them for three prominent em-
bedding methods, nsF5, UERD, and J-UNIWARD, with an
embedding rate of 0.4 bpnzAC. We assume that a high em-
bedding rate increases the difficulty of identifying trellis
artifacts.

Exp. 1: ⊕ trellis ⊖ no trellis, stego
Both detectors differentiate between the positive and the neg-
ative class with the same performance as before. They are

Table 3: Robustness of two detectors based on candidate
neighborhoods to deviations in distributions. The effect is
measured as the performance difference in %-pts. Reference
in-distribution performance for QF 90 is given at the top.

Analytic detector Learning detector

Acc. FPR FNR Acc. FPR FNR
Ref. 88.48 12.40 10.60 98.18 1.62 2.02

Exp. 1: Steganography in ⊖ no effect
Exp. 2: Steganography in ⊕

nsF5 − 3 + 5 − 0 + 4
UERD − 7 +14 − 4 + 9
J-UNI. − 9 +18 − 9 +20

Exp. 3: Double compression in ⊖ (QF1: 90)
QF2: 93 −37 +75 −49 +98 − 0
QF2: 90 −44 +88 + 1 − 1 − 0
QF2: 87 + 5 −11 −2 + 1 − 2
QF2: 75 + 2 − 5 −36 +72 + 0

Exp. 4: Double compression in ⊕ (QF1: 90)
QF2: 93 + 4 − 8 + 0 + 2 − 1
QF2: 90 + 0 + 0 + 1 − 1 − 1
QF2: 87 −14 +29 −48 +97
QF2: 75 − 2 + 4 + 2 − 0 − 3

⊕ positive class (trellis) ⊖ negative class (no trellis)

robust against stego embeddings in images without trellis
artifacts.

Exp. 2: ⊕ trellis, stego ⊖ no trellis
The performance of our detectors drops slightly due to an in-
crease in missed detections. While the embedding with nsF5
has little effect on our detectors, the embeddings with UERD
and J-UNIWARD seem to wash out trellis artifacts. However,
at least 70% of all images from ⊕ are still correctly classified
by the analytic detector and 78% by the learning-based detec-
tor. Note that this is a hypothetical experiment. No practical
steganographic tool we know of uses trellis quantization dur-
ing compression.

Double compression artifacts Double compression causes
periodic artifacts and discontinuities in the coefficient distri-
bution. To evaluate our detectors, we use images compressed
with QF1=90 and recompress them with QF2. We evaluate
the detectors trained on single compressed images of QF2.

Exp. 3: ⊕ trellis ⊖ no trellis, double compression
When QF2 > QF1, the performance of both detectors drops.
As for the analytic detector, βC of the negative class now
roughly resembles the pattern of trellis artifacts at some can-
didate values, causing the performance to decrease to 55%.
We observe the same for QF2=90 with a drop to 45%. The
learning-based detector fails for QF 93 (acc. = 50%) but is
robust against double compression with QF2 = QF1. When
QF2 < QF1, βC follows a different pattern. This amplifies



the differences between the classes and slightly increases the
performance. Interestingly, the performance of the learning
based detector decreases for QF2=75.

Exp. 4: ⊕ trellis, double compression ⊖ no trellis
Again, double compression with QF2 > QF1 causes βC to re-
semble the pattern of trellis artifacts. However, in this case, it
happens in the positive class, which amplifies trellis artifacts.
The performance of both detectors increases slightly. Respec-
tively, βC for QF2 < QF1 follows a different pattern than
trellis artifacts; now, concealing them. This leads to missed
detections of both detectors for QF2=87. Interestingly, double
compression with QF2=75 has close to no effect.

To investigate if the results of Exp. 3 and 4 impair the
reliability of double compression detection, we apply the
pre-trained double compression detection model DJPEG-
torch [30] on images compressed with trellis quantization.
DJPEG-torch uses histogram features and extracted quantiza-
tion tables as input to a convolution neural network. We find
that it is robust, also to images where double compression
amplifies trellis artifacts.

Overshoot deringing artifacts To ensure the reliability on
images from mozjpeg, we measure the effect of overshoot
deringing artifacts on our detector. We use the ALASKA2
dataset.

Exp. 5: ⊕ trellis ⊖ no trellis, deringing ,
Exp. 6: ⊕ trellis, deringing ⊖ no trellis

Overshoot deringing does not affect on the performance of
our detectors for the tested QFs. For the sake of space, we do
not include this result in Table 3.

5. DISCUSSION

In this paper, we find that state-of-the-art steganalysis models
misclassify innocuous cover images when they are unaware
of trellis artifacts. To address this, we propose methods based
on analytic modelling and statistical learning to detect trellis
artifacts in compressed JPEG images. The detectors are in-
tended to help practitioners applying forensic tools to make
informed interpretations of their results and avoid unexpected
behavior of tools tailored for different libraries when analyz-
ing images compressed with mozjpeg.

Our detectors are robust against steganographic embed-
dings of three popular embedding methods and artifacts from
mozjpeg’s overshoot deringing algorithm. We find that double
compression operations can diffuse trellis artifacts, causing
our detectors to fail.

The characteristic of double compression artifacts in an
image can reveal information about the history of an image
and potential manipulations. We find that the effectiveness
of trellis quantization is limited in previously compressed im-
ages. Future research should analyze whether this can be ex-

ploited during the detection of manipulations in images com-
pressed with trellis quantization.

Mozjpeg’s overshoot deringing algorithm introduces
changes in approximately 18% of images capturing natu-
ral scenes; however, it changes only 1% of the coefficients.
In a dataset of JPEG compressed computer graphics and text,
where there are more instances of ringing, it changes up to
40% of the coefficients in 90% of the images. This can have
implications for other fields, e.g., the detection of sharpen-
ing, where the absence [31] or characteristics [32] of ringing
artifacts are used as a telltale for image manipulation.

Our detectors complement previous efforts to finger-
print JPEG libraries. Existing approaches investigate imple-
mentation differences in common processing steps, such as
DCT [33], chroma subsampling [34], and rounding opera-
tions during quantization [35]. Furthermore, [36] leverage
the statistical features of recompressed images and [37] use
rounding errors of decompressed images. Apparent traces
to fingerprint mozjpeg are library-specific QTs, and image-
specific scan scripts and Huffman tables in progressive im-
ages. We concentrated our focus on the image signal, as these
parameters can be configured by the user during compression,
making them unreliable for the detection of mozjpeg.

6. CONCLUSION

It is important to understand optimizations of popular JPEG
implementations as many methods in multimedia security
rely on subtle traces in the signal originating from compres-
sion and decompression operations. Researchers proposing
learning-based methods for steganography, steganalysis, or
image forensics should include images compressed with
mozjpeg in their evaluation protocol, and revisit known meth-
ods in the light of trellis quantization.

Finally, practitioners should be careful when carrying out
forensic tests on images of unknown sources using tools tai-
lored to specific libraries.
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[28] J. Kodovský, J. Fridrich, and V. Holub, “Ensemble clas-
sifiers for steganalysis of digital media,” IEEE TIFS, pp.
432–444, 2011.

[29] J. Fridrich and J. Kodovský, “Rich models for steganal-
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