
LexiFi Runtime Types
Patrik Keller1 and Marc Lasson2

1University of Innsbruck
2LexiFi

28 August 2020

OCaml programmers make deliberate use of abstract data types for composing
safe and reliable software systems. The OCaml compiler relies on the invariants
imposed by the type system to produce efficient and compact runtime data
representations. Being no longer relevant, the type information is discarded after
compilation. The resulting performance is a key feature of the OCaml language.

However, the removal of type information during compilation also has down-
sides, e. g., it prohibits introspection. Having at hand the type of functions
arguments at runtime, a programmer could implement generic serializers, parsers,
database interfaces, and even GUIs.

In order to implement such generic functionality, OCaml programmers came
up with a number of workarounds. Most notably, prepocessors can be used
to derive non-generic functions for each relevant type. Preprocessing on the
abstract syntax tree (AST), like it is possible with OCaml’s PPX system, is very
versatile. Probably any introspective or generic function could be replaced with
this approach. However, writing PPX derivers is a tedious task, and, since AST
rewriting precedes type inference, also prone to error.

Another approach is to use PPX once per type for deriving a runtime
representation. The runtime type can then be used to write generic functions
within usual OCaml programs. This approach is taken by, e. g., Irmin1 and
Janestreet2.

LexiFi’s approach is similar, but instead of relying on PPX, LexiFi maintains a
compiler extension that derives runtime types using the OCaml typechecker. This
allows us to synthesize the representation of inferred types without additional
input from the programmer.

Recently, we implemented a PPX syntax extension that enables the use of
LexiFi’s runtime types on vanilla OCaml compilers. This will allow us to share
LexiFi libraries that rely on runtime types with the OCaml community. As a
first step, we provide the PPX and accompanying core libraries online3.

LexiFi runtime types are composed of multiple components: An untyped
representation (type stype) with a typed sibling (type ’a ttype = stype), a
typed representation for safe introspection (type ’a xtype), a compiler extension
(unreleased) that produces ’a ttype and hands them to generic functions where

1https://github.com/mirage/irmin/blob/master/README_PPX.md
2https://github.com/janestreet/ppx_typerep_conv
3https://github.com/LexiFi/lrt

1

https://github.com/mirage/irmin/blob/master/README_PPX.md
https://github.com/janestreet/ppx_typerep_conv
https://github.com/LexiFi/lrt

necessary, a PPX deriver that produces ’a ttype on an unmodified compiler,
and a (preliminary) unification mechanism that enables pattern matching on
runtime types with holes.

After giving a brief overview on these components, our presentation will
focus on the last aspect, namely pattern matching on runtime types. We will
demonstrate why pattern matching on runtime types is useful, how it could be
implemented, and what problems remain.

The following listing provides a small example for using our proof-of-concept
implementation. We instantiate the pattern matcher in order to provide generic
printing functionality. In the beginning, the matcher is empty. It does not
understand any type and returns "<opaque>" independent of its input (Lines 14
and 15). After registering cases for the types int and ’a list, the pretty printer
can handle values of type int and int list (Lines 34 and 35).

1 let to_string_matcher = ref Matcher . empty
2
3 let to_string : type a. t : a ttype -> a -> string = fun ~t x ->
4 let open Matcher in
5 match apply ! to_string_matcher with
6 | None -> "<opaque >"
7 | Some (M0 (module M : M0 with type matched = a)) -> M. return x
8 | Some (M1 (module M : M1 with type matched = a)) -> M. return x
9 | Some (M2 (module M : M2 with type matched = a)) -> M. return x

10
11 let p = print_endline
12
13 let () =
14 p (to_string ~t:[%t int] 42); (* <opaque > *)
15 p (to_string ~t:[%t int list] [0; 1; 2]); (* <opaque > *)
16
17 (* register int to string conversion *)
18 to_string_matcher :=
19 Matcher .add ~t:[%t int] Int. to_string ! to_string_matcher ;
20
21 p (to_string ~t:[%t int] 42); (* 42 *)
22 p (to_string ~t:[%t int list] [0; 1; 2]); (* <opaque > *)
23
24 (* register generic list to string conversion *)
25 to_string_matcher :=
26 Matcher .add1 (module struct
27 type ’a t = ’a list [@@deriving t]
28
29 let return t l =
30 List.map (to_string ~t) l
31 |> String . concat ", "
32 end) ! to_string_matcher
33
34 p (to_string ~t:[%t int] 42); (* 42 *)
35 p (to_string ~t:[%t int list] [0; 1; 2]); (* 0, 1, 2 *)
36 p (to_string ~t:[%t float list] [0.; 1.]) (* <opaque >, <opaque > *)

In the background, Matcher.add and its variants register each case in a
discrimination tree index. The index enables efficient lookup of registered
cases in Matcher.apply and does unification (e. g., filling the hole in the ’a list
converter with int and string as needed) on the fly.

We hope that our presentation encourages a fruitful discussion on runtime
types and their effective use in OCaml.

2

