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Abstract—A common belief in image steganalysis is that the
image orientation does not matter because the statistics are
similar when images are scanned horizontally or vertically.
However, feature-based and deep learning-based steganalysis is
sensitive to image rotations, demonstrating that images do contain
directional statistics. In this paper, we systematically study
how JPEG steganography and steganalysis methods interact
with two relevant causes of directionality: scene content and
asymmetries in the JPEG quantization table (QT). We find that
(1) steganalysis detectors often achieve higher accuracy in images
with directional scene content, (2) asymmetries in the QT bias the
detector’s generalization towards one direction, (3) a steganalyst
can benefit from training a detector tailored to the directionality,
(4) rotation augmentation improves orientation robustness, but
reduces detection performance on the original orientation.

Index Terms—JPEG steganography, steganalysis, directional-
ity, rotation augmentation

I. INTRODUCTION

Image steganalysis is the task of detecting whether an
innocently looking image contains steganography. A common
assumption in the steganalysis community is that images are
non-directional, that is statistics of pixel sequences in horizon-
tal direction are similar to statistics of pixel sequences in ver-
tical direction. This assumption dates back at least to the time
of the first quantitative detectors for LSB replacement (“What
holds when scanning an image horizontally ought to hold,
in general, when scanning vertically” [1, p. 13]). In feature-
based steganalysis, the assumption of non-directionality allows
feature descriptors to average co-occurrences calculated in
horizontal and vertical directions. Popular examples include
the subtractive pixel adjacency model (SPAM) (“the effect
of portrait/landscape orientation is negligible” [2, p. 3]), the
spatial rich model (SRM) [3, p. 5], and the JPEG rich
model (JRM) (“assuming the statistics of natural images do
not change after mirroring about the main diagonal” [4, p. 3]).

If image statistics were non-directional, then steganalysis
detectors trained with images of a single orientation should
naturally generalize to other orientations. To test this hypoth-
esis, we train four feature-based detectors for the popular
JPEG steganography methods J-UNIWARD [5], UERD [6],
J-MiPOD [7], and nsF5 [8], [9] using the 512 × 512 images
from the ALASKA2 dataset compressed with the JPEG quality
75. All four detectors achieve an accuracy between 79.9 %
(J-MiPOD) and 94.5 % (nsF5), as shown by the blue bars in
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Fig. 1: Motivation: Some feature-based steganalysis methods
lose performance when test images are rotated by 90 degrees.

Fig. 1. When the test images are rotated by 90 degrees, the de-
tection accuracy drops by 24.3 %-pt., 29.1 %-pt., and 25.9 %-
pt. for J-UNIWARD, UERD, and J-MiPOD, respectively. This
demonstrates that cover and stego images contain directional
statistics that are exploited by the detectors. An exception is
the nsF5 detector, where accuracy drops by only 0.3 %-pt (see
Sec. IV for explanation). This shows that steganography and
steganalysis interacts in different ways with a directionality
that warrant focused study.

Tracing this sensitivity to orientation requires a three-step
analysis: we need to understand the directional properties of
cover images, how directionality influences the selection chan-
nel, and how steganalysis methods deal with directionality. The
first step is covered by related work describing the causes of
directionality in natural images [10]. Two of the main causes
relevant for JPEG steganalysis are the scene content and asym-
metries in the JPEG quantization table (QT). However, we still
lack a fundamental understanding of how steganography and
steganalysis methods contend with directionality.

This paper aims to fill this gap by making the following
three contributions. First, we provide a systematic review of
how JPEG steganography methods interact with directionality.
Second, we investigate orientation sensitivity and symmetriza-
tion in hand-crafted features. Third, we empirically analyze
several consequences of directionality. We find that steganal-
ysis detectors often achieve higher accuracy in images with
directional scene content. Moreover, asymmetries in the QT
bias the generalization of the detector towards one direction.
Steganalysts may benefit from training detectors specialized to
one directionality. By contrast, rotation augmentation reduces
orientation sensitivity at the cost of lower detection perfor-
mance on the original orientation.

The paper is organized as follows: Section II recalls how
scene content and QTs introduce directionality. It also intro-
duces our experimental setup and presents baseline results.
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Section III analyzes how the selection channel of popular
JPEG steganography methods is influenced by directionality.
Section IV analyzes how JPEG steganalysis features are af-
fected by directionality. In Section V, we propose ways to deal
with directionality. Section VI concludes with a discussion.

II. BACKGROUND

Directionality can be inherent in the scene content or
introduced in several stages during image acquisition [10].
This paper focuses on arguably the two most influential factors
in JPEG steganalysis: the scene content and the QT.

a) Scene content: In natural images, most edges align
with the horizontal or vertical axes [11]. Many popular image
datasets are dominated by images with more horizontal than
vertical edges [10]. To quantify directionality in the scene con-
tent, we follow [10, long version, Appx. B] and measure the
relative distribution of horizontal and vertical frequencies in
the image’s power spectrum in different frequency bands using
steerable pyramids [12]. Analyzing the two highest frequency
bands yields a directionality score d ∈ [−2, 2], where images
with negative d contain more horizontal edges and images with
positive d contain more vertical edges. Typical example images
in ALASKA2 [13] with a strong negative d depict water with
horizontal wave fronts. Typical instances with high positive d
contain textures of hair, blades of grass, or fences. Exemplary
images are shown in [10, Fig. 5]. The directionality score is
largely unaffected by JPEG compression, because it integrates
over a range of spatial frequencies. This makes it a suitable
metric for quantifying directionality in the scene content.

Previous work [10] found that especially the BOSSBase [14]
benchmark dataset and to lesser extent also ALASKA2 are
skewed towards images with more horizontal edges. Splitting
the ALASKA2 dataset into four groups by directionality, with
d in [−2,−1], (−1, 0], (0, 1], (1, 2], gives a relative distribution
of 17, 44, 33, and 6 %. A training set bias can cause a
steganalysis detector to overfit to the directionality that is
overrepresented in the training set [10]. To prevent the results
from being influenced by such dataset bias, all experiments in
this paper use a copy of ALASKA2 in which each image has
been rotated by a random multiple of 90 degrees.

b) Quantization table (QT): JPEG compression achieves
much of its storage efficiency by quantizing DCT coeffi-
cients according to their visual perceptibility. Although camera
manufacturers customize their QTs [15], a popular choice
are the example tables provided in Annex K of the JPEG
standard [16]. Their inclusion in libjpeg has made them
the de-facto standard in many software libraries and in
academic research. Derived from psychovisual thresholding
experiments [17, Ch. 5], the luminance QT contains several
asymmetric features in all frequency bands. Although these
asymmetries were already pointed out in 1992 [18], they
have been neglected in the information security and forensics
community so far. The vast majority of luminance QTs in
forensic datasets are either scaled variants of the standard QT
or contain other asymmetric features [10, Tab. 2].

TABLE I: Detection accuracy and sensitivity to rotated images.

Sym. QT-75 Std. QT-75 Asy. QT-70\80

Embedding Feat. org. rot. org. rot. org. rot.

J-UNI. 0.4 GFR 86.9 86.9 87.2 62.9 85.8 53.7
UERD 0.4 GFR 85.5 85.4 85.5 56.4 84.3 51.5
J-MiPOD 0.4 GFR 79.9 79.8 79.9 54.0 79.2 51.1
nsF5 0.2 JRM 94.8 94.8 94.5 94.2 94.7 90.6

J-UNI. 0.4 CNN 90.1 90.1 90.3 77.6 89.1 77.0
UERD 0.4 CNN 92.7 92.7 93.4 87.2 92.3 90.3
J-MiPOD 0.4 CNN 88.9 88.9 88.4 78.8 87.7 82.0
nsF5 0.2 CNN 86.4 86.5 87.0 73.4 86.8 67.6

To study the effect of asymmetries in the QT, we experiment
with the following three QTs ordered by increasing asym-
metry: a symmetrized version of the standard QT at quality
factor (QF) 75 (denoted as Sym. QT-75), the standard QT at
QF 75 (denoted as Std. QT-75), and an artificial asymmetric
QT containing the values of the QF-70 QT below the diagonal,
of the QF-80 QT above the diagonal, and their average on the
diagonal (Asy. QT-70\80). We selected this asymmetric QT
because it is close to the QF-75 QT in terms of the sum of
quantization factors.

c) Experimental setup: All experiments draw from the
randomly rotated ALASKA2 color images with size 5122 [13].
We additionally create three copies rotated by 90, 180, and
270 degrees prior to compression. All images are JPEG-
compressed with one of the three QTs and 4:2:0 chroma sub-
sampling using libjpeg-turbo 2.1.0. Steganography is embed-
ded into the luminance channel using J-UNIWARD, UERD,
J-MiPOD, and nsF5 with an embedding rate of 0.4 bits per
non-zero AC coefficient (bpnzAC). For nsF5, we lower the
embedding rate to 0.2 because nsF5 introduces more changes.

Our feature-based and CNN-based experiments differ in
their experimental setup. Hand-crafted features are extracted
from the luminance channel and classified with an ensemble
of Fisher linear discriminant (FLD) base learners [19]. The
FLD ensembles are trained and evaluated with 10k randomly
selected images each, unless otherwise stated. Each image is
included twice, once with features from our base and from the
90 degree rotated copy. This ensures that there is no directional
bias in the training or evaluation set.

Furthermore, we train EfficientNet-B0 detectors on the
decompressed RGB images. We decided not to remove any
stride as this would increase GPU memory usage and force us
to use smaller batch sizes. In the CNN experiments, images
are split into 80% for training, 10% for validation, and
10% for testing. To reduce overfitting, the CNNs are trained
with all four database variants and flipping augmentation. All
experimental results with FLD ensembles and CNN detectors
are averages over ten or five training–test splits, respectively.

d) Baseline results: Prior work suggests that the first
three embedding functions are best detected with JPEG
phase-aware features in the spatial domain, while nsF5 is
best detected in the DCT domain [20], [21], [22], [7].
Hence, the feature-based detectors use the Gabor filter resid-



TABLE II: Summary of sensitivity of embedding functions to
directionality in the content and quantization table (QT).

Embedding Directional content Directional QT

J-UNIWARD small medium
UERD none high
J-MiPOD small high
nsF5 medium small

uals (GFR) [22] in the decompressed domain and the JPEG
rich models (JRM) [4] in the DCT domain.

The top part of Tab. I reports the test accuracy for feature-
based steganalysis. J-MiPOD is the most difficult embedding
function to detect, while nsF5 is detected with the highest ac-
curacy, despite the lower embedding rate. With the symmetric
QT-75, all detectors generalize to rotated test images. This is
expected because the random rotation of the database elim-
inated any systematic scene directionality. With the standard
QT-75, the GFR-based detectors suffer performance drops on
rotated test images. (This data is the basis of Fig. 1.) With the
asymmetric QT-70\80, the FLD ensemble’s performance on
rotated images is close to random guessing. The nsF5 detector
is only slightly worse when tested with rotated images. We will
get back to this and explain it below.

The CNN detectors in the bottom part of Tab. I show the
highest accuracy for UERD and the lowest for nsF5. The
latter could probably be improved by training with DCT coef-
ficients [23]. As with the ensemble detectors, the performance
of the CNNs also drops with rotated test images.

For reference, we also trained SRNet [24] after ImageNet
pretraining on the task of detecting J-UNIWARD. With the
symmetric QT-75, SRNet achieves an accuracy of 93.4%
on both original and rotated test images. With the standard
QT-75 and the asymmetric QT-70\80, SRNet’s accuracy of
93.2% and 92.1% on the original orientation drops to 83.1%
and 69.4% on rotated test images, respectively. While SRNet
outperforms EfficientNet, it takes significantly longer to train.
Since no architectural component in SRNet suggests that it
would handle directionality differently from EfficientNet, we
use the latter for the remainder of the study.

III. EFFECT OF DIRECTIONALITY ON STEGANOGRAPHY

A prerequisite for studying the influence of steganalysis
to directionality is to understand how JPEG steganography
interacts with directionality. This section provides a qualitative
analysis by inspecting the embedding change probabilities for
an embedding rate of 0.4 bpnzAC.

Figure 2 shows how each embedding function reacts to
directional scene content and to the three QTs. In each
subfigure, the large squares depict the 8 × 8 DCT subbands
from 1 000 randomly selected images, therefore any content
directionality should be averaged out. The small squares in
the bottom right corners show the same analysis for 1 000
images with directional scene content (d < −1.5). These
have fewer non-zero AC coefficients in horizontal than in

vertical subbands. Brighter colors represent higher embedding
probability (lower embedding cost).

J-UNIWARD, UERD, and J-MiPOD have in common that
they calculate the embedding cost per DCT coefficient as
a ratio of the QT and the image content. The embedding
cost scales with the quantization factor in the numerator, as
shown by the columns in Fig. 2 a,b,c. The image content in
the denominator controls the content adaptivity, so that the
embedding prefers textured over smooth regions. Its realization
varies between the three embedding functions.

Turning to specific embedding functions, UERD measures
block flatness, but treats both directions equally. Hence, UERD
ignores directionality in the scene content, which can be
seen from the similarity of the large and small squares in
Fig. 2b. J-UNIWARD measures how altering a single cover
pixel distorts the horizontal, vertical, and diagonal Wavelet-
filtered residuals. If the image content is smoother in one
direction than the other, the cost of embedding along or-
thogonal edges increases. For example, when an image is
blurred in the horizontal direction (e.g., motion blur smoothing
out vertical edges, d < 0), the cost of embedding around
vertical edges increases. The small squares in Fig. 2a show a
higher embedding probability for vertical subbands compared
to horizontal ones, because directional images contain only
few or attenuated horizontal frequencies (vertical edges). Yet,
the asymmetric QF-70\80 QT overrides the directionality of
the image. In J-MiPOD, the embedding cost is controlled
by the residual pixel variances of the decompressed image.
Intuitively, pixels with higher variance are assigned lower
embedding cost. In the directional image subset, we observe
slightly higher embedding change probabilities in the first
and second horizontal subbands compared to their vertical
counterparts, Fig. 2c. However, the effect of the scene content
is low. Finally, no-shrinkage F5 (nsF5) does not embed into
DC and zero-AC coefficients. Hence, if the image contains
more zero-AC coefficients in one direction, nsF5 embeds
less into this direction. Directionality in the QT affects nsF5
indirectly as the quantization can zero out AC coefficients, but
the effect of the QT is small, as can be seen by comparing the
columns in Fig. 2d.

Table II summarizes these findings qualitatively.

IV. EFFECT OF DIRECTIONALITY ON STEGANALYSIS

We first focus on feature-based methods, as the effect of di-
rectionality is more easily explained with feature descriptions.
Results on CNN-based detectors are given in Section V.

Some steganalysis feature sets average submodels calcu-
lated in horizontal and vertical directions. Examples are
SPAM686 [2], the spatial rich models (SRM) [3], and the
JPEG rich models (JRM) [4]. This symmetrization lowers the
feature dimensionality, thereby reducing the risk of overfit-
ting and multicolinearity in classification tasks. More recent
feature sets, such as the DCT residuals (DCTR) [20], the
phase-aware rich model (PHARM) [21], and the Gabor filter
residuals (GFR) [22], do not average over orientations. While
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Fig. 2: Interaction of embedding functions with directionality;
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−2 −1 0 1 2
Directionality

0.00

0.05

0.10

0.15

O
ri

en
ta

tio
n

se
ns

iti
vi

ty

DCTR
PHARM
GFR
JRM

−2 −1 0 1 2
Directionality

10

20

30

40

JR
M

st
re

ss

Sym. QT-75
Std. QT-75
Asy. QT-70\80

Fig. 3: Left: Comparing features extracted from the original
orientation and after rotation by 90 degrees, we observe differ-
ences grow with increasing directionality. JRM features seem
insensitive. Right: Feature symmetrization causes stress inside
the JRM features. Asymmetric QTs skew the distribution.

PHARM and GFR average by flipping, we did not find any
explanation why directional symmetrization was abandoned.

a) Orientation sensitivity of phase-aware features: We
evaluate the orientation sensitivity of the DCTR, PHARM,
and GFR features by comparing feature descriptors extracted
from the same image in its original orientation and rotated
(after compression) by 90 degrees. To account for the varying
number of submodels with different sizes, we normalize each
submodel to unit sum, compute the L1 distance between the
submodel from original and rotated image, and average these
distances across submodels. Figure 3 (left) shows the mean
L1 distance split by directionality scores from our randomly
rotated ALASKA base compressed with the symmetric QT-
75. The descriptors are closest when the scene content has

no dominant direction (d ≈ 0), but differences increase
with stronger directionality, demonstrating that these features
capture directional statistics.

b) Orientation symmetrization in the JPEG rich model:
JRM remains the most relevant orientation-symmetrized fea-
ture descriptor for JPEG steganalysis, as the SRM has been
superseded by the (orientation-sensitive) PHARM descrip-
tor [21]. Figure 3 (left) suggests that the (symmetrized) JRM
features are barely sensitive to image rotation. While orienta-
tion symmetrization reduces orientation sensitivity at the out-
side, averaging horizontal and vertical submodels creates stress
inside the feature descriptor. To measure stress, we disable the
directional symmetrization and compute the (unnormalized)
L1 distances between original and the transposed submodels,
which the JRM usually symmetrizes.

Figure 3 (right) relates the JRM stress to the image direc-
tionality. With the symmetric QT-75, images with d ≈ 0 cause
the lowest stress. The stress increases with the directionality
of the scene content. With the standard QT-75, the lowest
stress is observed for images with a directionality score around
d ≈ 0.4. This is because the standard QT-75 contains lower
quantization factors in the vertical mid-frequencies than in
the horizontal mid-frequencies. Images with small positive
directionality (more horizontal frequencies) compensate for
the slight asymmetry in the QT. The artificially asymmetric
QT-70\80 shifts the lowest stress to images with d ≈ −0.8.
This QT has lower quantization factors for the horizontal DCT
coefficients and higher quantization factors for the vertical
coefficients. Images with moderately negative d compensate
for the asymmetric quantization. With this asymmetric QT,
the DCTR and GFR features exhibit a similar trend, i.e.,
lower orientation sensitivity for images with small negative
directionality, although the trend is less pronounced than for
the JRM features. (Plot omitted due to space constraints.)

While the averaged curves in Fig. 3 (right) suggest a clear
connection between directionality and stress, we also observe
individual images with high directionality but low stress.
These images contain mostly smooth content. The images with
the highest stress show scenes with high-frequency patterns.
Future work could tune the directionality detector to only con-
sider frequency bands that are captured by the JRM features.

c) Are the JRM features invariant to rotation?: Despite
the symmetrization, JRM features are not invariant to rotation,
as shown by the steganalysis results with nsF5 and the
asymmetric QTs in Tab. I. One reason is that submodels
extracted along the major diagonal correspond to submodels
extracted along the minor diagonal in rotated images. Hence,
the submodels switch places in the flattened feature descriptor.
Additionally, the JRM applies only sign symmetrization to
the two-dimensional co-occurrences, but no directional sym-
metrization like in the SRM [3, Sec. II,C]. Analyzing nsF5
with the Std. QT-75 and GFR features yields an accuracy
of 84.8 % and a performance drop by 23.8 %-pt. on rotated
images. This indicates that the high degree of robustness still
originates from the JRM features and less from nsF5.
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Fig. 4: Grouping the test images by directionality shows that
all CNN and the feature-based J-UNIWARD and UERD de-
tectors are more accurate on images with strong directionality.

V. DEALING WITH DIRECTIONALITY

The baseline results in Tab. I demonstrate that steganalysis
detectors are sensitive to rotated images with asymmetric QTs.
Since the QT is available to the analyst, performance losses
due to asymmetric QTs can be mitigated when steganalysts
are aware of the detectors’ limitations and carefully control
image rotations applied during image decompression.

a) J-UNIWARD and UERD detectors achieve higher
accuracy in directional images: Having trained feature-based
and CNN-based detectors in Sec. II, we report separately
the accuracy for images of different directionality with the
symmetric QT-75. The test images are split by directionality
into four groups d ∈ [−2,−1], (−1, 0], (0,+1], (+1,+2]. For
brevity, the groups are denoted as --, -, +, and ++. Fig. 4
shows the feature-based FLD (top) and CNN detectors (bot-
tom). All CNNs and the FLD detectors for J-UNIWARD and
UERD achieve higher test accuracy on images with stronger
directionality (−− and ++). Only the FLD detectors for J-
MiPOD and nsF5 achieve higher accuracy on less directional
images (− and +). The discrepancy between FLD and CNN
detectors for J-MiPOD and nsF5 suggests that steganography
is not inherently less secure in directional images. Instead, the
detection accuracy across directionality groups also depends
on which embedding artifacts are exploited by detector. Ana-
lyzing the detector could reveal if accuracy differences stem
from the steganography method or learned artifacts, but this
is beyond this paper’s scope.

b) When the QT is asymmetric, detectors generalize
better to one direction: The previous experiment showed that
detectors trained with a symmetric QT generalize, on average,
equally well to images of negative and positive directionality.
We now show that asymmetric QTs can bias the detector to
generalize better to images of one direction. Figure 5 displays
the test accuracy of three J-UNIWARD GFR-FLD detectors,
one for each QT, split by image directionality. As before, the
symmetric QT makes the detector generalize equally well to
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Fig. 5: Asymmetric QTs bias the generalization towards one
direction: With the standard QT, detectors work better on
image with positive directionality. With the asymmetric QT,
detectors work better on images with negative directionality.

TABLE III: Rotation augmentation makes CNN detectors
generalize to rotated images, but they underperform CNNs
trained with a specific compression direction.

Base rotation Rotation aug.

Embedding and rate org. rot. org. rot. ∆ org. ∆ rot.

J-UNIWARD 0.4 90.3 77.6 89.4 89.3 −0.9 +11.7
UERD 0.4 93.4 87.2 91.9 91.8 −1.5 +4.6
J-MiPOD 0.4 88.4 78.8 84.7 84.8 −3.7 +6.0
nsF5 0.2 87.0 73.4 85.7 85.7 −1.3 +12.3

images of negative and positive directionality. With the stan-
dard QT, the detector generalizes better to images of positive
directionality. With the asymmetric QT-70\80, the detector
generalizes better to images of negative directionality. This
corroborates the observation from Sec. IV, where QT asym-
metries skew the orientation sensitivity towards the content
direction that compensates for the asymmetric quantization.
The two groups with strong directionality are still detected
with higher accuracy, because the effect of the asymmetric
QT overlaps with the observation of higher detectability in
strongly directional images described above. We observe the
same trend for UERD and J-MiPOD detectors, but not for
nsF5. Presumably nsF5 is less sensitive to QT asymmetries.

c) Analyzing directional images can benefit from a spe-
cialized detector: In practice, the steganalyst may find suspi-
cious images with directional content. Suppose the test images
are dominated by vertical edges (d > 1, group ++) and use
the symmetric QT-75. We show that it can be beneficial to train
a specialized detector for this directionality. We randomly split
the images with d > 1 into two halves for training and testing
(4528 images each), and train ensemble classifiers as before.
The results are averaged over ten training–test splits. The
orange bars in Fig. 6 show the test accuracy on the directional
data. The proposed specialized detector outperforms a general
detector trained with the same number of images but randomly
selected from all directionalities (dark blue). For reference, a
detector that is trained with four times the number of randomly
selected images (light blue) achieves about the same accuracy
as the specialized detector. When training material is abundant,
the steganalyst does not benefit from a specialized detector.
However, when steganalysts need to collect a training database
for a specific case or channel, they can benefit from matching
the directionality of the suspicious images.
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Fig. 6: When test images are directional (d ∈ [1, 2]), a
specialized detector trained with images of similar direction-
ality (orange) outperforms a detector trained with the same
number of randomly selected images (dark blue). Increasing
the number of randomly selected training images by factor 4
compensates for the lack of specialization (light blue).

d) Training CNN detectors with rotation augmentation:
To make CNNs robust to all orientations, an intuitive approach
is to randomly rotate the training images after decompression,
as is common practice [25]. We retrain CNN detectors with
rotation augmentation on the base dataset with the standard
QT-75 and compare with the results from Tab. I, where images
were rotated prior to compression (base rotation). The results
in Tab. III show that rotation augmentation allows CNNs to
generalize to rotated test images. At the same time, rotation
augmentation decreases accuracy on the original orientation
by 0.9 %-pt. (J-UNIWARD) to 3.7 %-pt. (J-MiPOD).

VI. CONCLUDING DISCUSSION

We have analyzed the effects of directionality on steganog-
raphy embedding functions and detection performance. Our
experiments are broad, but far from comprehensive. We have
focused on two factors of directionality, the scene content
and the QT. All images were compressed using the Loeffler–
Ligtenberg–Moschytz 2-D DCT (ISLOW) and with 4:2:0
chroma subsampling, because these are libjpeg’s default set-
tings and most likely encountered in practice. Both operations
produce directional rounding artifacts [10], but we deemed
their effect negligible due to the subsequent quantization. Such
rounding artifacts may be more pronounced at higher QFs.

Even in directionality-balanced setups, e.g., randomly ro-
tated dataset and symmetric QT, we observed that individ-
ual detectors became biased towards one direction. In FLD
ensemble classifiers, this could be because individual base
learners are trained on random subsets of training samples,
which might by chance be biased. In the CNNs, this could be
related to ImageNet pre-training, but further experiments are
needed to pinpoint the exact cause. We conjecture that rota-
tion augmentation promotes learning of orientation-invariant
features, but discards useful directional image properties.

Future work could investigate if the improvements in
Sec. V-c) and d) can be achieved with fine-tuning rather
than retraining. Our directionality score derived from steerable
pyramids integrates over a large range of spatial frequencies.
Tuning the directionality score to consider only the frequency
bands that are relevant to steganography and steganalysis could
provide an even finer analysis of the effects of directionality.
Broader future work should also investigate the effect of
directionality in spatial domain steganography.
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[3] J. Fridrich and J. Kodovský, “Rich models for steganalysis of digital
images,” IEEE Transactions on Information Forensics and Security,
vol. 7, no. 3, pp. 868–882, 2012.
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JPEG steganography: Dead ends challenges, and opportunities,” in ACM
Workshop on Multimedia Security, 2007, pp. 3–14.
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[17] H. Lohscheller, “Einzelbildübertragung mit wachsender Auflösung,”
Dissertation, Technische Hochschule Aachen, 1982.

[18] S. Klein, D. Silverstein, and T. Carney, “Relevance of human vision
to JPEG-DCT compression,” in Human Vision, Visual Processing, and
Digital Display III, vol. 1666, 1992, pp. 200–215.
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