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ABSTRACT

The convergence statistics of JPEG blocks has been shown to be a
useful tool to forensically analyze high quality compressed images.
Since current approaches are based on empirical observations, we
propose a theoretical analysis explaining the case of grayscale im-
ages and maximum quality JPEG compression (i.e., quality factor
equal to 100). The approximate distribution of the stable block ra-
tio at different compression stages is derived, showing that it ulti-
mately depends on the variance of the quantization noise in the DCT
domain. We apply such results to discriminate never compressed
images and images compressed once with maximum quality, by re-
sorting to results on JPEG error statistics. Tests on image patches
with different size and content validate the theoretical results, which
allow for obtaining high accuracy through a calibration-free maxi-
mum likelihood classification rule.

Index Terms— Image forensics, high quality compression,
block convergence, hypothesis test, statistical modeling.

1. INTRODUCTION

The traces of JPEG compression in digital images have been widely
investigated for forensic purposes, by studying the effect of both the
partition of the spatial domain in 8×8 blocks and the quantization in
the DCT domain. It is known that high quality compression, possibly
repeated with identical parameters, is a challenging case. The statis-
tical traces left by such operations are generally weak and histogram-
based techniques lose accuracy. Thus, specific approaches have been
developed for the detection of high quality compression [1] and iden-
tical recompression [2] (i.e., with the same quantization table). Spe-
cial attention has been devoted to the maximum quality case [3, 4],
i.e., when the quality factor is equal to 100 and the quantization step
used in the DCT domain is 1 for all subbands. For brevity, we refer
to this kind of compression as JPEG-100.

The detectors based on JPEG block convergence are valuable
tools because of their minimal dependence on the image content and
their ability to accurately identify several previous compressions (up
to 10). The main rationale is the fact that the 8×8 image blocks (pro-
cessed independently during the JPEG compression scheme) will at
some point get stable (i.e., completely unaltered) in the spatial do-
main after repeated identical recompression. This process, called
block convergence, occurs in a similar manner for all blocks. Thus,
by recompressing with JPEG-100 the image under investigation and
computing the ratio R of blocks that turn out to be stable, it is pos-
sible to estimate how many previous JPEG-100 compressions oc-
curred. This has been first shown in [3] for grayscale images, suc-
cessively extended to color images and other high quality factors
(≥ 90) in [5], and combined with DCT-based approaches in [6].

This approach is currently based on the empirical observation
of this property. In fact, a calibration phase, where R is computed

on differently processed images and its empirical distribution is fit-
ted, is always necessary. However, we lack a theoretical understand-
ing of why these ratios are similarly obtained across different image
content and size. In this work, we address this gap for the case of
grayscale images and JPEG-100 compression, by deriving a model
for the pdf of R. We obtain that its mean mainly depends on the
number of previous JPEG-100 compressions, while its variance is
related to the number of blocks involved in the analysis. Building
on recent results on JPEG error statistics [7], we apply our theory to
the problem of discriminating never compressed from decompressed
images. The decision is made according to the Maximum Likelihood
rule among the two theoretically derived distributions of R, thus no
calibration is necessary. Extensive tests show that the obtained ac-
curacy is high even for small image patches.

The paper is structured as follows: Section 2 recalls the JPEG-
100 compression pipeline and introduces the notations used through-
out the paper; in Section 3, we develop the theoretical model of the
stable block ratio distribution; we instantiate the model for the case
of never compressed versus decompressed images by integrating ex-
isting results in Section 4; experimental tests on real images are pro-
posed in Section 5, and conclusions are drawn in Section 6.

2. NOTATION AND COMPRESSION SCHEME

To recall the processing steps carried out on an image block during
JPEG-100 compression, we define Xt as the random vector whose
components Xt[i], i = 1, . . . , 64, represent the integer pixel val-
ues of a generic 8 × 8 block (arranged column-wise) in a grayscale
image compressed t times with JPEG-100. We denote the direct
and inverse two-dimensional DCT by the operators DCT2(·) and
IDCT2(·), and we define Yt

.
= DCT2(Xt). Most approaches ne-

glect the finite arithmetic errors introduced by these computations
(i.e., it is assumed that IDCT2(DCT2(Xt)) = Xt). We provision-
ally adopt this assumption and will discuss its validity in Section 5.

In the case of JPEG-100 compression, the DCT coefficients of
the image block are quantized with step 1. During decompression,
the inverse DCT is applied to the quantized values, and the resulting
pixel values are rounded to the nearest integer in the range defined
by the bit depth. As the operations in the spatial and DCT domain
are essentially equivalent (except for saturated pixels), we can define
the operator [·], which rounds to the nearest integer every component
of its argument, and represent the compression pipeline as in Fig. 1.
Two auxiliary random vectors

Ỹt
.
= [Yt], X̃t

.
= IDCT2(Ỹt) (1)

are defined for convenience.
After rounding X̃t, we obtain the final block Xt+1, which is the
starting point for a potential subsequent recompression.
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Fig. 1. JPEG-100 compression pipeline.

3. PROPOSED MODEL

As mentioned in Section 1, forensic methods based on block conver-
gence analyze the ratio of so-called stable blocks, i.e., blocks that
are completely unaltered in the spatial domain after recompression
with JPEG-100. In particular, it has been shown experimentally that
the more JPEG-100 compression stages have previously occurred,
the more the ratio of stable blocks increases towards 1. With the
goal of obtaining a statistical characterization of this phenomenon,
we derive a model for the following quantities:

• the probability pt that a single block is stable in an image com-
pressed t times with JPEG-100 (Section 3.1);

• the distribution of the stable block ratio R among N blocks of an
image compressed t times with JPEG-100 (Section 3.2).

3.1. Single block statistics

Using the notation of Section 2, a block is stable when the realiza-
tions of Xt and Xt+1 are identical. This happens if every compo-
nent of X̃t deviates from the corresponding one in Xt for an abso-
lute amount lower than 1/2, so that [X̃t] = Xt. In other words,
the probability that a block is stable in an image compressed t times
with JPEG-100 is given by:

pt
.
= Pr

(
||∆Xt||∞ <

1

2

)
, ∆Xt

.
= X̃t −Xt. (2)

By exploiting the linearity of the direct and inverse DCT, we obtain:

∆Xt = IDCT2(∆Yt), ∆Yt
.
= Ỹt −Yt, (3)

thus the deviation of X̃t from Xt is entirely due to the quantization
operation in the DCT domain.

We can now exploit two observations:

1. ∆Yt is the quantization noise in the DCT domain, where the
quantization step is always equal to 1. We assume that all the com-
ponents of ∆Yt are independent with zero-mean and the same
variance σ2

t . It is justified by the fact that the distribution of the
DCT coefficients resembles a Generalized Gaussian (even after
high quality compression), and its variance is much larger than
the quantization step.1 Empirical evidence will be given in Sec-
tion 4. A similar model is also assumed in [9] for the quantization
noise in the spatial domain. Under this assumption, the covariance
matrix of ∆Yt is diagonal with constant entries equal to σ2

t :

Σ∆Yt = σ2
t I, (4)

1Note that in case of quantization steps larger than 1, correlation in quan-
tization noise might arise [8].

where I is the 64× 64 identity matrix.

2. ∆Xt is a linear transformation of ∆Yt, which contains inde-
pendent entries. In particular, due to the separability of the two-
dimensional DCT and its inverse, we have that

∆Xt = (D⊗D)−1∆Yt, (5)

where D is the 8 × 8 matrix of the 1-D DCT trasform and ⊗
indicates the matrix Kronecker product.
Thanks to the Central Limit Theorem (in Lindenberg’s version),
and under the assumption of independence in ∆Yt, it follows
that all the components of ∆Xt are approximately zero-mean and
jointly Gaussian. Moreover, the covariance matrix Σ∆Xt is

Σ∆Xt = (D⊗D)−1Σ∆Yt((D⊗D)−1)T

= (D−1 ⊗D−1)σ2
t I (D⊗D) = σ2

t I, (6)

where we have exploited the orthogonality of the DCT transform
(DDT = I) and the properties of the Kronecker product.

In other words, the components of the quantization noise vec-
tor ∆Yt are transformed through the inverse DCT into decorrelated
and jointly normal (thus independent) components of ∆Xt with the
same mean 0 and variance σ2

t . Then, we can write

∆Xt[i] ∼ N (0, σ2
t ), (7)

where N (µ, σ2) indicates a normal distribution with mean µ and
variance σ2. Consequently, we can derive pt in (2) as follows

pt =
∏

i=1,...,64

Pr

(
|∆Xt[i])| <

1

2

)
=

[∫ 1
2

− 1
2

PDFN (0,σ2
t )(x)dx

]64

,

(8)

where PDFN (µ,σ2)(x) is the probability density function ofN (µ, σ2)
evaluated in x.

It is worth pointing out that the value of pt monotonically de-
pends on the variance σ2

t of the quantization noise in the DCT do-
main: the higher is σ2

t , the lower is pt.

3.2. Block sample statistics

Practical forensic detectors based on [3, 5] consider a sample of N
blocks of the image under investigation. The ratio of blocks that
are stable after a JPEG-100 recompression is used as discrimina-
tive statistic in the forensic analysis. The number N depends on the
size of the image region under investigation and on the pre-selection
strategy. For instance, in [3] and [5] the authors suggest to discard
flat blocks, i.e., blocks where all the pixels have the same value.

We denote as Rt the random variable representing this ratio,
where t is always the number of previous JPEG compressions the
image under analysis underwent. Let us indicate as ∆X

(n)
t the ran-

dom vector representing the n-th block in the sample, and define the
binary random variables,

S
(n)
t =

{
1 if ||∆X

(n)
t ||∞ < 1

2
(the n-th block is stable)

0 otherwise.
(9)

According to Section 3.1, all of them have a Bernoulli distribution
with parameter pt, thus their expected value is pt and their variance
is pt(1 − pt). Moreover, we suppose that the S(n)

t are spatially
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(a) Sample statistics of ∆Y0.
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(d) Sample statistics of ∆X1.

Fig. 2. Sample statistics from 1 million 8× 8 blocks X0 randomly generated and processed as in Fig. 1.

independent (i.e., for a fixed t). Then,Rt is the sample mean of these
independent binary variables and, due to the Central Limit Theorem,
it is approximately normal distributed around the true expected value
pt with variance inversely proportional to the number of blocks N :

Rt =

∑N
n=1 S

(n)
t

N
, ⇒ Rt ∼ Nt, (10)

where Nt
.
= N

(
pt,

pt(1−pt)
N

)
. Note that in practice Rt is a dis-

crete random variable with a binomial distribution (scaled by factor
1/N ), which lends itself also to a (discrete) Poisson approximation.
However, we use the normal approximation because dealing with
continuous cdfs in more convenient, and it offers a better approxi-
mation with respect to the Poisson when pt is not small (e.g., in the
case of repeated compression).

4. APPLICATION IN A FORENSIC DECISION PROBLEM

The analysis developed in Section 3 enables a statistical charac-
terization of the ratio of stable blocks in a grayscale image JPEG-
100 compressed t times if the quantization noise variance is known.
Thus, we need a model for σ2

t to characterize the distribution of Rt.
To instantiate our theory in a framework with testable hypothe-

ses, we complement it with theoretical results on JPEG error analysis
[1]. This work proposes upper bounds for σ2

t in the case of t = 0
(uncompressed images) and t = 1 (images JPEG-100 compressed
once and then decompressed). While pointing the reader to [1] for
details, we report the estimated bounds (from Eq. 7 of [1, p. 561])

σ2
0 ≤ 0.0833, σ2

1 ≤ 0.0548, (11)

which are obtained by exploiting the expression of the quantization
noise variance for Gaussian and Laplace variables proposed in [10].

In Fig. 2, we show sample statistics of ∆Y0, ∆X0, ∆Y1, ∆X1

from 1 million randomly generated 8× 8 blocks X0 with uniformly
distributed integers between 0 and 255. For each column, the upper
plots report for the different 64 components (along the horizontal
axis) the sample mean and variance, which lie around zero and the
two bounds in (11), respectively. The lower plots represent the sam-
ple covariance matrices (colors refer to the bar on the left), which
clearly have a diagonal nature. These data confirmed that the as-
sumptions in Section 3 are reasonable.

Then, we use a simplified model where an equality relationship
holds in (11) to compute p0 and p1 as in (8), obtaining

p0 = 0.003, p1 = 0.119. (12)

Finally, in order to distinguish between never compressed and
once JPEG-100 compressed images, we formulate the following hy-

pothesis test:

H0 : R ∼ N0 vs H1 : R ∼ N1. (13)

5. EXPERIMENTAL VALIDATION

In order to validate the theoretical models and explore their prac-
tical implications, we have conducted experimental tests on image
patches of different size and content.

We have mentioned earlier that the assumption of negligible
arithmetic errors of the DCT implementation needs scrutiny. In our
tests we consider the widely used libjpeg library (version 6b). It
supports three different DCT implementations: the fast method pro-
duces visible artifacts and is rarely used, the float method employs
floating-point arithmetic and behaves more similarly to the textbook
DCT (matrix multiplication). The slow method relies on integer
arithmetic. All three implementations use a divide-and-conquer al-
gorithm that reuses intermediate results and may amplify small ini-
tial errors. We exclude the first method from our analysis and focus
on the remaining two, keeping in mind that the float method likely
follows more closely the theoretical model but the slow method is
set as default in libjpeg, thus being more widely used.

We took 1488 never-compressed images from the Dresden
dataset [11] and 500 images from the RAISE-1K dataset [12]. We
have created a subset of images, denoted as I0, fulfilling the null hy-
pothesis by converting the 1988 color images to grayscale and saving
them in uncompressed format. For the alternative hypothesis, the
images have been compressed with JPEG-100, using float and slow
DCT implementations, giving the sets I1,F and I1,S, respectively.

We classified squared patches of different size (256×256, 128×
128, 64 × 64, 32 × 32) coming from the test set images. For each
patch size, 19 880 patches (10 per image) have been randomly ex-
tracted, processed, and classified as follows:

1. Flat blocks are identified and only the remaining N non-flat
blocks are considered, as suggested in [3, 5].

2. The patch is JPEG-100 recompressed by using the specified
DCT implementation.

3. Each block among the N non-flat ones is compared to its re-
compressed counterpart: if the n-the block is stable, then s(n)

(the realization of S(n)) is 1, otherwise it is 0.

4. The ratio r =
∑N

n=1 s
(n)

N
is computed and the classification

is performed with a Maximum Likelihood rule:2 the î-th hy-
pothesis is accepted iff

î = arg max
i∈{0,1}

PDFNi(r).

2It is to be noted that applying rule 4 is equivalent to performing a
Neyman-Pearson test and fixing the threshold of the likelihood ratio test to 1.
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Fig. 3. Classification results for different patch size.

Figure 3 reports the results from the test set. Subtables refer
to different patch sizes. In each subtable, we report in the results
obtained with the ML rule and we differentiate according to the DCT
implementation considered for images verifying H1, by arranging
the two cases column-wise. True Negative Rates (TNR) and True
Positive Rates (TPR) are reported in each case, where the former is
constant across columns as I0 is the same in both cases. Below each
subtable, we also plot the histograms of the ratios r obtained from
patches in I0 (blue bins), I1,F (orange bins in the left plot) and I1,S

(orange bins in the right plot), together with the theoretical pdfs.
Here, only patches for which all the blocks are non-flat have been
considered, so thatN is the same for every value of r at a fixed patch
size, and bins are centered at n/N , n = 0, . . . , N . Additionally, for
these patches we also propose a comparison of ROC curves: we plot
the theoretical one (computed starting from the theoretical cdfs) and
the empirical ones obtained from the data, by differentiating again
the two DCT methods. In red, we report the point on the ROC curves
corresponding to the threshold with significance level 0.05, that is
theoretically determined fromN0. The dashed red line indicates this
false positive rate equal to 5% (if visible on the scale).

As expected, the more blocks are involved in the computation of
r, the better the data are separated. This behavior is well modeled
by the theoretical distributions and leads to higher accuracies when
the patch size increases. It is however noticeable that the actual dis-
tribution of the ratio is often a bit shifted to the left: it is essentially
negligible when the patch size is small and/or the float DCT is em-
ployed, while it is quite evident for the slow DCT in bigger patches
where the distribution has a lower dispersion around the mean. We
conjecture the stronger rounding and approximations due to integer
arithmetic arising in the slow implementation are no longer negligi-
ble. A more significant deviation from the simplified model of the
quantization noise variance assumed is introduced, thus calling for a
more accurate model for σ2

t (and, consequently, for pt).
Nevertheless, the detection results by means of the ML rule are

robust across the two different DCT implementation, with minimal
impact on the TPR. Accuracies are above 98.43% in all cases, except
for 32× 32 patches where a TPR drop is encountered, as explained
by the more pronounced overlap of the theoretical pdfs.

Moreover, by looking at the ROC curves, we observe that the
theoretical thresholds at 0.05 significance level always yield a false

positive rate lower than 5% and the highest possible TPR in the area
delimited by the red dashed line. In other words, the theoretical cdfs
provide the best threshold in terms of TPR when allowing a false
positive rate of 5%. Calibrating the threshold from our empirical
data does not lead to any benefit. Tests performed by adopting the
binomial model (not reported here for the sake of brevity) do not
show significant differences, although p0 is close to 0. This confirms
that our theory is practical.

6. CONCLUSION

We have proposed a theoretical approach to JPEG block convergence
for grayscale images and maximum quality compression.

The approximate distribution of the stable block ratio at different
compression stages has been derived as a function of the quantization
noise variance in the DCT domain. Tests on images with different
content and size confirm the validity of the model and its capabil-
ity to enable accurate hypothesis tests. In fact, the discrimination of
never compressed and decompressed images after JPEG-100 com-
pression yields an accuracy ranging from 98.4% to 99.6% by means
of a calibration-free Maximum Likelihood rule. We also found that
calibration from empirical data does not improve performance when
fixing a false alarm rate upper bound.

While the presented results are encouraging, they represent only
a step towards the full comprehension of JPEG block convergence.
Several directions should be explored in future work. This can in-
clude the extension to color images and to other quality factors. As
pointed out in Section 5, the quantization noise variance model could
be adapted in order to better represent the effect of the slow DCT
implementation, used as default in popular libraries. This could also
enable a theoretically founded identification of the DCT method, as
done empirically in [3]. Finally, a systematic way to compute the
quantization noise variance after several compressions would allow
us to model the full convergence path of a generic block beyond the
first two compression cycles.
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[3] Shi-Yue Lai and Rainer Böhme, “Block convergence in re-
peated transform coding: JPEG-100 forensics, carbon dating,
and tamper detection,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2013, pp.
3028–3032.

[4] K. Wang A. T. P. Ho and F. Cayre, “An effective histogram-
based approach to JPEG-100,” in IEEE International Con-
ference on Image Processing Theory Tools and Applications
(IPTA), 2016.

[5] Matthias Carnein, Pascal Schöttle, and Rainer Böhme, “Foren-
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