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ABSTRACT

Outsourcing machine learning inference creates a confidentiality
dilemma: either the client has to trust the server with potentially
sensitive input data, or the server has to share his commercially
valuable model. Known remedies include homomorphic encryption,
multi-party computation, or placing the entire model in a trusted
enclave. None of these are suitable for large models. For two rele-
vant use cases, we show that it is possible to keep all confidential
model parameters in the last (dense) layers of deep neural networks.
This allows us to split the model such that the confidential parts fit
into a trusted enclave on the client side. We present the eNNclave
toolchain to cut TensorFlow models at any layer, splitting them
into public and enclaved layers. This preserves TensorFlow’s per-
formance optimizations and hardware support for public layers,
while keeping the parameters of the enclaved layers private. Evalua-
tions on several machine learning tasks spanning multiple domains
show that fast inference is possible while keeping the sensitive
model parameters confidential. Accuracy results are close to the
baseline where all layers carry sensitive information and confirm
our approach is practical.

CCS CONCEPTS

« Theory of computation — Adversarial learning; « Security and
privacy — Hardware security implementation; Authentication;
Computer systems organization — Heterogeneous (hybrid)
systems; Neural networks.
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1 INTRODUCTION

A core problem of outsourcing machine learning (ML) tasks to
the cloud is that the protection goals of the server and the client
are in direct conflict. The server needs to keep the parameters of
the ML model private to retain competitive advantage or sustain
business. Clients want to use the server’s model to make inferences
on sensitive data of their own. Common practice is that clients

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AlSec, November 13 2020, Orlando, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8094-2/20/11...$15.00
https://doi.org/10.1145/3411508.3421376

Rainer Bohme
rainer.boehme@uibk.ac.at
University of Innsbruck
Innsbruck, Austria

share their data with the server, who are thereby forced to accept
the risks of lost confidentiality.

Publishing the parameters of an ML model in production is
not advisable for another reason: it would facilitate a number of
attacks studied in the rapidly evolving field of adversarial machine
learning [4, 31, 38, 40, 45]. A reasonably effective defense against
these threats at inference time is to turn the white-box access into a
black-box: the attacker can query the model as an oracle but learns
nothing more than its output, in our case a class label [32].

Previous works have dealt with how to best protect the client’s
data when it is transmitted to the server, involving homomorphic
encryption [13, 14], multiparty computation [27], and trusted pro-
cessors [16, 29]. The former two incur substantial computation and
communication overhead. The latter is constrained by the size of
the trusted processor. While these methods may work for small
neural networks, they cannot cope with larger (and more complex)
deep neural networks (DNNs).

Our approach relates to [16, 29] for using trusted enclaves, but
brings the inference to the client. Unlike previous works, we offer a
configurable split between public and private parts of the network,
and enclave only the private part. Splitting the model this way gives
us a novel sweet spot: sensitive parameters in the private layers
remain confidential while hardware accelerators, such as GPUs,
can handle the (computationally more demanding) public part.!

The split crucially depends on a phenomenon observed in trans-
fer learning. Transfer learning is a paradigm that proceeds by taking
a DNN pre-trained for a given domain, and retraining it for a spe-
cialized task [30]. Research suggests that the first layers tend to
remain stable feature extractors, whereas the final (often dense) lay-
ers, which combine the features for task-specific decisions, change
drastically during retraining [39, 53]. For classification problems
we can thus split the model into a general feature extractor and a
task-specific classifier.

By choosing a pre-trained and publicly available feature extractor
and keeping its parameters fixed during retraining, we can guaran-
tee that it does not contain information about the sensitive classifier
or the training data. Such publicly known feature extractors are not
confidential and do not require protection. Conversely, all sensitive
information is contained in the final classifier. To fulfill our goal
of moving the black-box offline, it is then enough to protect the
parameters of the classifier part of the model.

This paper is organized as follows. In the next section, we moti-
vate our work further by giving two concrete use cases. Section 3
presents the architecture, including our threat model and selected
implementation details for TensorFlow and Intel SGX. Evaluation

!The release version of the framework can be found on GitHub under https://github.
com/alxshine/eNNclave [36]. The experiments can be found under https://github.com/
alxshine/eNNclave-experiments [37].
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results for the inference time as well as the accuracy cost of con-
fining sensitive parameters follow in Section 4. Section 5 positions
the contribution in the context of related work. Section 6 discusses
before Section 7 concludes.

2 USE CASES

Executing parts of a DNN in a trusted enclave has many potential
applications. To motivate our approach and guide its evaluation,
we introduce two exemplary use cases for supervised learning. The
first one protects the privacy of subjects in a training dataset against
model inversion [11] and set membership attacks [38]. The second
use case protects test data and sensitive model parameter in an
outsourcing scenario.

Independent of the use case, the term server refers to the party who

o has access to labeled training data {(x, y)}",

e trains the model 4 by minimizing a loss over all training
samples Y7, |hg(x;) — y;|, and

e “owns” the induced parameters 6.

By contrast, the client

e observes or collects the test data x”/,
e applies the model for inference i’ = hg(x’), and
e needs to know the classification output 7’.

Both use cases instantiate client and server in different ways.

2.1 Protecting training data during offline
inference

A company (= server) wants to authenticate employees with an
offline face recognition system [1, 2] installed on all its laptops (=
clients). While several pre-trained DNNs for face images exist, every
such system needs to be retrained to the faces of all employees.
This data is exposed to a privacy risk, e. g., if laptops get stolen and
an attacker extracts information about employees’ faces contained
in the local copy of the model parameters 6.

Prior research has shown that an attacker with white-box access
to the model hy can craft images that circumvent the authentication
system [4], or extract (noisy but recognizable versions of) training
images [11]. Using the membership inference attack [38], it would
also be possible to detect whether a given person is an employee or
not. The referenced source has shown that limiting 3’ to only the
output label reduces the success rate of this attack to 66 % accuracy
down from the original 92 % for a binary classification problem. No
defense evaluated in [38] performed better for a fixed model.

The first step in defending all of the above attacks is hiding 0
from the attacker. She is only able to query the model as a black-
box. Black-boxes are currently created by keeping the model on
the server and providing an online oracle for the attacker to query.

To move this black-box offline, the server needs a way to allow
the client to efficiently infer §” without sharing 6 in its entirety.
Placing the dense layers and the associated parts of 6 inside an en-
clave means that in the event of a compromised client, the attacker
cannot analyze the layers leading to the output label.

2.2 Protecting test data while maintaining
model confidentiality

Spam detection relies on ML models [5, 7, 51]. Specialized firms offer
ML-based spam and phishing detection for email as a service [8,
21]. The provider (= server) treats the classifier hy as intellectual
property and is not willing to share it with customers (= clients). He
may even be bound by non-disclosure agreements with his suppliers
of training data, and face legal liability if information about the
training data leaks through 6. Most deployed solutions perform the
classification server-side. Customers, in turn, are reluctant to share
all email with the provider to have them classified. This use case
demonstrates the full conflict of protection goals between client
and server.

With our approach, the server can share hy in encrypted form,
and let the client make predictions within a trusted enclave. This
does not elevate the threat model to more than a black-box scenario.
Because the client can efficiently calculate §j’ offline, x” never leaves
its domain. The approach eliminates the need for the customer to
entrust the provider with sensitive email communication.

Both use cases replace an online service by an offline solution.
Without further measures, this deprives the server of the possibil-
ity to meter ML queries. We note that business models based on
metering are still possible by using known techniques for keeping
state in enclaves, such as monotonic counters [20], online signing
of commitments to input data, or ledgers [22]. This engineering
task is tangential to the present work and not further considered
here.

3 ARCHITECTURE

This section describes the threat model, high-level architecture, and
selected details of our proof-of-concept implementation.

3.1 Threat model

To analyze the conflicting protection goals, we define two attackers:

Attacker 1. is a malicious client who wants to learn the secret
part of 0 faster than with repeated black-box access. More formally,
we split 0 into a confidential part 6, and a public part 6;. Creating
and sustaining an offline black-box requires that 6, and any inter-
mediate values derived from it stay inside the trusted enclave at all
times.? Attacker 1’s objective is to break the confidentiality of this
black-box. She will compromise availability or integrity only as a
means to this end.

The attacker knows all information about the public part of the
model and its parameters 0z. She owns the system and controls
the entire environment outside the trusted enclave, including input
data and all persistent memory. But she cannot read or modify the
enclave state other than through the specified entry points. Side
channels (cache, timing, etc.) are out of scope for this paper, and
we assume Attacker 1 cannot exploit them. Moreover, Attacker 1 is
computationally bounded. She cannot brute-force keys or imper-
sonate the server or the vendor of the trusted processor if a public
key infrastructure (PKI) is used.

2Recall that with this information attackers can craft adversarial samples [4], perform
model inversion [11, 38, 40], or steal the model [45].



We recall the limitations of trusted enclaves as computers with
limited and volatile memory. This means that any persistent state
needs to be stored outside the trusted enclave, and can be inspected
or modified if it is not encrypted and integrity protected. Without
additional precautions, the trusted enclave is prone to state rollback
attacks.

Attacker 2. is a malicious server who wants to abuse test data
x’. In our design, all communication between client and server
happens before the test samples are observed (see Fig. 2 below).
As the client makes inferences offline, the server never receives x’.
The client controls the entire environment of the trusted enclave,
making it impossible to leak x” using a malicious enclave. Therefore,
Attacker 2 is warded off by the design of eNNclave, but mentioned
here for completeness.

The system designer’s objective is to keep the inference as effi-
cient and accurate as possible, with respect to an insecure alterna-
tive that requires trust between client and server, while defending
against both attackers.

3.2 High-level pipeline

Fig. 1 illustrates how we split a DNN into a public and a private
part. The feature extractor (which here consists of 5 convolutional
blocks) remains public, while the task-specific layers are enclaved.
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Figure 1: Split of a VGG-16 model into public and enclaved
parts. The convolutional layers (Block 1-5) are taken from
a pre-trained model with public parameters.

The input to our toolchain is a TensorFlow model given in HDF5
format [15], created for instance by the standard save function
of the popular TensorFlow Keras library. These files contain the
model architecture with labeled layers, and all parameters. We have
implemented a tool to load the original model, separate the last k
layers (k supplied as command line argument), and generate enclave
code in C according to the architecture information for those layers.
The resulting enclave code is then compiled as an Intel SGX enclave.
At this step, the parameters of the enclaved layers are extracted for
the secret provisioning described below. In our proof-of-concept,
we directly encrypt 8, to disk instead of going through the entire
secret provisioning process.

We reimplemented all TensorFlow operations used in our test
networks as functions in C. The input model is parsed, and a master

forward function containing the required calls for each layer is
generated. Code for loading the encrypted parameters from disk
is also inserted into the forward function. Appendix B contains
annotated example code resulting from this process.

Users can interact with the generated enclave using a Python-to-
C adapter we built. It provides Python bindings, but is itself written
in C using the standard Python/C API [10]. Enclave instantiation,
teardown, and calling the forward function can be done through
its interface. This adapter also handles all internal state required
for enclave interaction.

Additionally, we built a custom TensorFlow layer to abstract the
enclave interaction during inference. This layer has no parameters
as those are stored securely in the enclave. Our tool generates a new
HDF5 file with the information for the public layers and replacing
the last k layers with the EnclaveLayer. This file is ready to be
sent to the client along with the enclave.

At runtime, the public part of the network is executed in regular
TensorFlow until it reaches the EnclavelLayer. This layer then
extracts the data from the TensorFlow tensors and passes it to the
Python-to-C adapter, which forwards it to a previously instantiated
enclave. After the enclave has completed the forward pass, i’ is
returned to the EnclavelLayer, which wraps it in a TensorFlow
tensor and returns it to the calling Python code again.

3.3 Implementation details regarding efficiency

Intel SGX reserves 128 MB of RAM for the entire trusted execution
environment, not all of which is available to the programmer. Our
tests indicate a maximum of 120 MB of physical memory can be
allocated. The available memory is also shared between all enclaves.
Ignoring code size, the (roughly) 120 MB of available memory allow
for 31 million 32-bit floats, shared between 6, and intermediate
results. Comparing that to the models we used, the VGG-19 model
has 41 million parameters, and current models grow larger still.

To reduce the memory footprint of 6., we gradually load and
decrypt parameters from disk as they are required for the forward
pass. As the number of parameters for each layer is known during
enclave code generation, we hard-code load calls into the enclave.
A single heap buffer is reused for the parameters of all layers. In
total, this allows us to reduce the memory footprint for 6, to the
parameter size of the largest enclaved layer.

Due to data dependencies in matrix multiplication and convo-
lution, we cannot use a single buffer for intermediate results. We
alternate between two buffers, whose size is determined by the
two largest output shapes of consecutive layers. Both optimizations
combined reduce our memory footprint to the parameters of the
largest layer, plus twice the size of the largest intermediate output.

It remains to handle the result of the public part of the DNN. Per
Intel SGX specification, arrays passed to the enclave in function
calls are copied to enclave memory on entry. This increases the
memory footprint by the input size of the first enclaved layer.

While SGX on Linux can increase memory through paging [18],
virtual memory is not automatically increased as needed and new
pages need to be explicitly requested. Paging also causes signifi-
cant performance impacts, requiring roughly 40k cycles per 4kB
page [41]. Naive usage of paging can also introduce new side-
channels into the code, thus increasing the attack surface for 6.



Due to the negative security and performance impacts, we decided
against the support of paging and focused on reducing the memory
footprint of our enclave instead.

Our proof-of-concept using Intel SGX is limited to feed-forward
DNNs. These DNNs have no state, and the only data structures we
need to handle are parameter and input matrices. TensorFlow stores
these matrices in memory as flattened arrays of 32-bit floats, so
they can be forwarded to the enclave without transformation. We
did not optimize the dense matrix multiplication and convolution
for cache coalescing. While the performance loss for matrix mul-
tiplications seems negligible, the convolutions are visibly slower
than in optimized TensorFlow CPU code, presumably due to higher
cache pressure.

Enclave instantiation takes between 0.74-0.80 seconds, seem-
ingly independent of how much computation is performed inside
the enclave. This time is determined by the Intel framework. We
have not explored ways to reduce it.

3.4 Implementation details regarding security

Fig. 2 shows the setup and runtime procedure of eNNclave. It in-
volves four parties: client C, server S, the client’s trusted processor
P, and the vendor of the processor V. We use the common trust
assumptions: S trusts P, and both S and C trust V.

The following steps serve the goal of ensuring the integrity
of e(h). V has equipped P with a unique private key Py, and
knows the corresponding public key Ppyp. S has a way to obtain
the authentic Py, for P. S generates enclave code e(h) from h and
transmits it to the client C. This e(h) is not encrypted as it does
not carry confidential information, and C can extract the model to
run its public part outside the enclave. C instantiates e(h) in P to
prepare the enclaved part. P derives a key pair ey}, and epyiy specific
to e(h) and itself. P then sends a signature of e(h) and ey, to C who
forwards it to S. S verifies the authenticity using Ppyp, published
by V, as well as the integrity of e(h). Intel SGX standardizes this
procedure as remote attestation using a pre-installed quoting enclave.

The next phase handles the secret provisioning of the parameters
0e. With the authentic epyp, S can encrypt 0, and send it to C. C
forwards 0, to the enclave residing in P during inference. Intel
SGX has standardized this process as secret provisioning. Our proof-
of-concepts uses Intel’s sealing functionality to encrypt 0, with
AES/GCM. The key is derived from P and e(h). 0; is not confidential
and sent to C in plaintext.

After observing or receiving a test sample x’, C calculates the
public part of the inference process using h and ;. The resulting
intermediate value xé is forwarded to the enclave running in P,
where the confidential part of the inference is calculated using a
decrypted .. The prediction result §” is returned to C.

We acknowledge the risk of side channel attacks found against
Intel SGX, which may compromise the common trust assumption
placed in P, and discuss them in Section 5.

4 EVALUATION

We set up a series of experiments, detailed in Table 1, to evaluate
the impact our approach on performance in terms of inference
time and accuracy. Fitting our use cases, we selected tasks from
the domains of image recognition and text analysis. For multiple

Trusted processor Client Server Vendor
P c S v
publish Ppub
e(h) e(h)
verify
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g/ = hge (Xé) é’l

Figure 2: Setup and runtime steps required to calculate
hg(x’") with confidential 6.. S must verify that an unmodified
e(h) is running in P before it can send 6, without risking loss
of confidentiality. The first two phase only happen once. No
connection between C and S is required thereafter.

DNN architectures, we measure the inference time as a function
of the split. For one plausible split, we compare the accuracy in a
transfer learning scenario with free and fixed parameters 6z of the
non-enclaved part. As the focus of this work is security and not ML,
we refrained from tuning our hyper-parameters to match published
performance benchmarks for the tasks and domains. Nevertheless,
all evaluated models produce sufficiently high baseline accuracy to
rule out spurious performance due to trivial classifier realizations.

4.1 Evaluation setup

4.1.1 Tasks and data. For the image recognition task, we use the
indoor scene classification? dataset MIT67 [34] and the VGG-16 con-
volutional architecture (configuration D in [39]). The DNN was pre-
trained on the training set of the ImageNet ILSVRC challenge [35].
In our accuracy evaluation, we also use a second set of pre-trained
parameters specifically for indoor scene classification based on the
Places365-Standard database [53]. The input data is resized to the
VGG-16 input size of 224 x 224 x 3 RGB images. After the resizing,
the feature space of both source sets and the target set are identical.
The ILSVRC dataset contains images from multiple contexts, and is
not specific to indoor scene recognition. While the Places database
is focused on scene recognition like our target task, it also contains
outdoor scenes. Our example scenario is thus a domain adaption
scenario. As we have labeled data in both the source and the target
domain, this corresponds to inductive transfer learning as referred
to by Pan et al. [30].

Text analysis is evaluated using a synthetic transfer learning
problem using Amazon review data [47]. We pre-train a 5-class
classifier with the review text and the associated ratings of 150 000
book reviews. The ratings on a scale of 1-5 stars serve as labels.
The custom task in this scenario is an unbiased subset of 200 CD
and vinyl record reviews per rating, to which we are transferring

3Unfortunately, our efforts to use a face recognition task, inspired by the use case,
failed due to insurmountable difficulties in compiling the dataset needed to replicate
the results published in [33].



the model. A vocabulary of the 20 000 most common words is built
from the source dataset. Words are replaced by their indices in this
vocabulary. Words not in the vocabulary are replaced with 0. The
vocabularized review texts are padded or shortened to 500 tokens to
build the training set. Both the source and target datasets were vec-
torized using the embedding learnt on the source dataset. We again
have slightly different source and target tasks, with labelled data
for both, making this another domain adaption task in inductive
transfer learning.

More precise information about the source and target datasets is
contained in Table 2.

4.1.2 Models. As stated earlier, we used the VGG-16 architecture
for the indoor scene recognition task. To further investigate the
performance limits of our current implementation we also used a
dataset of flower images [26] and a VGG-19 model (configuration E
n [39]). This was purely for performance analysis and no transfer
learning was done. For the larger model, we reduced the number
of parameters in the largest dense layer because it requires more
memory than is available in the standard configuration.* We used
the VGG models because they provide very good accuracy on large
and complex datasets by connecting only convolutional, pooling,
and dense layers in a simple feed-forward manner.

For the text analysis feature extractor tasks, we utilized a simple
CNN consisting of an embedding layer, followed by 4 blocks of one
separable 1D convolution and a 1D max-pooling each. The task
classification was done by 3 dense layers interleaved with dropout
layers.>

Table 1: Overview of evaluation models and datasets.

Task Samples Extractor Classif.

Dataset train test ¢ bias [ p 1 p feat.

Image recognition (use case 1)
MIT67 5360 1340 67 1.0 19 14M 5 5M 150k
Flowers 3485 865 5 1.0 22 20M 4 21M 150k

Text analysis on Amazon reviews (surrogate for use case 2)
Books 600k 150k 5 1.0 9 752k 6 1M 500
CDs 800 200 5 1.2% 9 752k 6 1M 500

a: Bias caused by random split into training and test set.

Table 1 gives an overview of our evaluation tasks, where c refers
to the number of classes, [ refers to the number of layers, and p refers
to the number of parameters. We report a bias metric calculated by
the fraction of the most frequent class in the test dataset divided by
the expected number of occurrences under equal priors. A value
of 1 means no bias. This check rules out that accuracy metrics are
inflated by assignments to a dominant class.

4.2 Performance
To evaluate the inference performance of eNNclave, we measured

the required time for predicting a single sample. This allows us

4We reduced the number of parameters of the dense layers from 4096 to 800. Only the
reduction of the first layer is required to make the model small enough for eNNclave.
5See the code for more details. It is included in the experimental git repository [37].

to compare the instantiation time required for the trusted enclave
execution and TensorFlow, respectively. We break down the time
required for inferring on hg, and hy,.

Our experiments were run on an Intel i7-9700 3 GHz 8-core CPU
with 64 GB RAM running Ubuntu Linux 18.04 with the Linux SGX
SDK [18] and drivers [19] installed. While we do have an Nvidia
RTX 2070 GPU installed on the machine, we did not use it for
our evaluation as the inference times for a single sample were
consistently faster on the CPU. Table 4 (in the appendix) shows a
detailed comparison of CPU and GPU execution times. Transfer
learning tasks were evaluated with fixed feature extractor weights
and measured on the target dataset.

All reported measurements are averages of the runtime of 20
independent inferences on the same input. The standard deviation
for the enclave execution time was below 3 % for all models and all
splits, indicating that the number of measurements is commensu-
rate to the measurement error. We confirmed that later iterations
are not faster than early ones, thereby ruling out that pre-loaded
caches affect our measurements. We validated correctness by check-
ing that all splits for all models return the same result as the pure
TensorFlow inference.

Our results are shown in Figs. 3 to 5 and Table 5 in the appendix.
The bar charts show the total time per inference on a logarith-
mic vertical axis for every possible split of the DNN. As layers
are enclaved from the last to the first, the leftmost bar (at tick 0)
represents the baseline without eNNclave, and the rightmost bar
shows the (not recommended) case of a fully enclaved network.
Ticks in between denominate the number of layers from the back
that are executed as a trusted enclave.

As to the breakdowns, TensorFlow time is the time required to
compute hy, (x"). Enclave execution is the time required to compute
hg, (x7). The total enclave time is the sum of the enclave execution
and the enclave instantiation time, which can make up a large part
of the total runtime for small hy,. All enclave times refer to the
section marked runtime in Fig. 2. We do not measure the enclave
generation and secret provisioning because it happens only once.

As visible in Fig. 3, enclaving the dense layers (ticks 1-5) has
a smaller performance impact than enclaving dense as well as
convolutional layers. The computation time is either matched or
surmounted by the time required to set up the enclave, depending
on the number of enclaved layers. The layer at tick 3 has the largest
number of parameters making up 80 % of the dense classifier, which
causes a visible increase in the required computation time. The
layers at ticks 2 and 4 are dropout layers. These layers are only
active during training, so we do not generate code for them and it
is evident that the bars do not change. The layers at ticks 6 and 7
are pooling layers, which are fast to compute. The convolutional
layers have a much larger impact on performance. This is due to the
larger input sizes and a higher number of computations required
for convolutions in general. The difference between convolutions
in TensorFlow and convolutions in the enclave can be attributed
to the hardware limitations of the trusted enclave, as well as less
optimized code. As shown in the figure, when convolutional layers
are enclaved, the instantiation time becomes less dominant (but
keep in mind the log scale).

At the suggested cutoff with 5 enclaved layers (dashed line), the
performance impact of inference with parameter confidentiality
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Figure 3: Performance evaluation for our MIT67 indoor
scene classification model based on VGG-16 as a function of
eNNclave’s split point. The leftmost bar (tick 0) is the base-
line without eNNclave. Tick 24 is fully enclaved. The dashed
line shows the boundary between the task-specific classifier
and the general feature extractor, the recommended split.
Lower is better (faster). Mind the logarithmic scale.

103 ] Enclave instantiation
[ Enclave execution
Ml TensorFlow execution

0123456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26
Number of layers in the enclave

=) =) =Y
= — T

Execution time [s]

i

Figure 4: Performance evaluation of our flower classifica-
tion model based on VGG-19 as a function of the split point.

is factor 17. However, with an inference time of 1.3 seconds, this
may be affordable for occasional inferences on single images, for
instance in the use case of employee face recognition on laptops. If
one can amortize the instantiation time over multiple inferences,
the relative overhead decreases.

The VGG-19 model on the flowers dataset in Fig. 4 confirms the
observation from the smaller model. The dense layer at tick 4 has the
highest number of parameters and causes the largest performance
loss. Executing the other dense layers inside the trusted enclave
requires less time than setting it up. Note that this model does
not use any dropout layers. All layers are active during inference.
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Figure 5: Performance evaluation of our text analysis task
using a convolutional DNN as a function of the split point.

As the VGG-19 DNN is deeper than VGG-16, executing the entire
model inside the trusted enclave takes more time on inputs of the
same size.

Our text analysis model in Fig. 5 exhibits the largest increase
in execution time for the first dense layer (tick 6). This layer has
the largest input size and holds almost all parameters of the task-
specific classifier. For all other dense layers, the instantiation takes
an order of magnitude longer than execution.

Observe that the 1D convolutions in text analysis have a much
smaller performance impact than the 2D convolutions in image
recognition. This is due to smaller inputs and the need to iterate
over one dimension less, which greatly increases the efficiency of
memory access. Note that the tokenization of input texts is not part
of the network and thus not included in the measurements. We
also did not port tensorflow.embedding layers to the enclave. It
is always run in TensorFlow, but requires very little time due to its
relatively small input size.

At the suggested cutoff with 6 enclaved layers (dashed line), the
price to pay for parameter confidentiality is factor 65. While this
sounds prohibitive at the first glance, the corporate email filter in
our use case will probably make many inferences at a time and
hence amortize the enclave instantiation penalty more easily, which
reduces the overall impact to factor 23. For perspective, confiden-
tiality of corporate emails (and safety from spam and malware) may
be worth a 10-fold hardware investment and twice the latency.

To use the TensorFlow adapter, the input layer is never enclaved.
This is visible at the rightmost ticks in Figs. 3 to 5. As the time
required for executing hg, also depends on input and output size,
splits with a single public layer can ironically require more time
than models with multiple public layers. However, this effect is
negligible when compared to the total inference time.

Running neural networks fully inside trusted enclaves is suitable
for small models, but breaks down performance as the input size
and number of parameters increase. For models of the size used
in image recognition, eNNclave’s ability to cut between any two



Table 2: Accuracy of transfer learning with and without fixing the non-enclaved layers. The difference between flexible and
fixed is the cost of confining sensitive parameters to the dense layers during retraining.

Domain Original model Retrained to custom task
Samples Accuracy Samples Accuracy

Dataset train test C Bias  (flexible) train test C Bias flexible fixed diff.
Image recognition

ImageNet 1.2M 150k 1000 n/a 744%? 5360 1340 67 1.0 59.7% 571% 2.6%

Places 1.8M 329k 365 1.012 55.2% 5360 1340 67 1.0 629% 601% 2.8%
Text analysis

Books 480k 120k 5 1.004 52.5% 800 200 5 12 485% 470% 15%

a: Table 3 in [39]: top-1 validation error for configuration D (VGG-16)

layers allows the operator to choose the application-specific tradeoff
between security and performance. This was not possible before.

4.3 Accuracy impact

Choosing eNNclave’s cutoff layer in our transfer learning scenario
entails a tradeoff between inference speed and accuracy. The mea-
surements presented in the last section suggest that inference times
remain practical when enclaving the dense layers only. In this sec-
tion we evaluate the resulting accuracy loss if a classifier is retrained
to a task with 05 fixed. For the common practice of using public fea-
ture extractors [30], this approach guarantees that no information
about the retraining set is leaked to the adversary. Our baseline
case are transfer learning models retrained on exactly the same
data, but with all parameters flexible. Table 2 shows the results.

For the image recognition task using the VGG-16 architecture,
we evaluate the case of enclaving five layers. We observe accuracy
losses of 2.6 %-pts (from an initial 59.7 % task accuracy) and 2.8 %-pts
(from 62.9 %) for a pre-trained network we learned from the Ima-
geNet ILSVRC 2014 challenge [35] and public weights specifically
trained for indoor scene recognition [52], respectively.®

For comparison, we find an accuracy loss of 1.5 %-pts, down
from an in initial 48.5 % task-specific classification accuracy, for
our synthetic text analysis task using the vanilla convolutional
DNN architecture. Here we enclaved the last six layers, noting that
the scenario is a bit artificial because the model is small enough
to fully fit into the enclave with negligible performance impact.
Nevertheless, it confirms the finding of relatively small performance
losses for another domain. It also corroborates the tenor in the
transfer learning literature on the relevance of the dense layers for
task-specific classification accuracy [39, 52].

Overall, it depends on the criticality of the application to decide
if accuracy losses of this magnitude are acceptable. In principle,
one can extend the speed—accuracy tradeoff to a triangle relation-
ship. This would involve accepting some confidentiality loss by
retraining with more flexible layers than enclaved during infer-
ence. However, since quantifying the information leakage from

The initial training iterated over 2000 epochs. Retraining took 200 epochs with 3
batches per epoch. Further meta-parameters and test/training split seeds can be found
in our experiment repository [37].

non-enclaved convolutional layers is non-trivial, we defer the ex-
ploration of this dimension to future work. This could encompass
a security-aware composition of training sets.

5 RELATED WORK

The eNNclave approach contributes to and builds on several streams
of literature, which we summarize one by one.

Trusted enclaves for machine learning. Prior art using trusted
enclaves for machine learning include Ohrimenko et al. [29] and
Kunkel et al. [24]. These works enclave the entire model and thus are
limited to models fitting into the hardware or require expensive and
possibly insecure paging. None of the two source reports results for
models of input size larger than 32X 32 pixels. Our input sizes are 50
times as large. Tramér et al. [44] propose using the trusted enclave
as controller for computations performed on an untrusted GPU.
Inputs and intermediate results are encrypted using an additive
cipher, and the results are verified statistically using Freivalds’
algorithm [12]. This method scales to large models, but it cannot
be used to protect the model parameters in an offline scenario.

Hanzlik et al. [16] propose enclaving individual model layers.
This approach circumvents the size limitation of enclaves, but in-
curs constant performance overhead during the transition between
trusted and untrusted execution, as the input and output data of
each layer must be transferred between environments. More im-
portantly, the approach is vulnerable to differential attacks on indi-
vidual layers, which give rise to divide-and-conquer algorithms for
model stealing. We are not aware of a security analysis showing
the limits of such attacks. Our work avoids this risk as data does
not leave the trusted environment between layers.

Fig. 6 illustrates the different ways eNNclave and prior art use
the trusted procession in ML.

Cryptography and distributed computing. Cryptographic defen-
sive measures have been proposed to protect test data in online
scenarios. Graepel et al. [14] use homomorphic encryption to train
and apply polynomial classifiers on small amounts of encrypted
data. CryptoNets by Gilad-Bachrach et al. [13] apply this method
to neural networks. However, it requires changes to the model
and greatly increases inference time. Known methods using homo-
morphic encryption for neural networks do not protect the model
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Figure 6: Use of trusted processors for inference on neural
networks: eNNclave and prior art.

parameters, cannot handle large models, and do not support all
types of activation functions.

Multiparty computation (MPC) has been used by Mohassel and
Zhang [27] to distribute data and models for regressions and neural
networks. A similar approach could in principle be used to split
data and model between client and server, achieving test data and
model confidentiality. However, multiparty computation requires
online communication, substantial bandwidth, latency overhead,
and distributed trust assumptions.

Focusing on other aspects than security, Dean et al. [9] and
Teerapittayanon et al. [43] propose distributing neural networks
over multiple nodes. In principle, this could prevent a single ma-
licious node from learning x’ or 6 completely. But it incurs the
cost of online communication. As neither of the two methods has
been designed with security in mind, the model confidentiality and
confidentiality of test data have not been evaluated.

Most prior work we are aware of in the security domain deals
with protecting client data on the server. While some methods could
be adapted to protect the server’s model on the client’s machine,
they were not designed for such a scenario and cannot be used
truly offline. Table 3 synthesizes a comparison of related work to
the proposed eNNclave proof-of-concept.

Table 3: Comparison of approaches to solve confidentiality
problems in machine learning,.

Confidentiality Offline Hardware Versatility
Approach data  parameters  inference accel. size  activ.
Slalom [44] [ ] O O [} [ ] [ ]
Fully enclaved [29] ® ) [ ] @] @] [ ]
Layer by layer [16] ® © [} O [ J [ J
Homom. crypto [13, 14] ) ) (@] O @] (@]
MPC [27] [ J [ ] O O O O
Split models [9, 43] © © O [ ] [ ] [ ]
eNNclave (proposed here) [ J [ [ ] © [ J [ J

Attacks against machine learning at inference time. The attacks
reviewed here contribute to the motivation of our work and its
threat model. Tramér et al. [45] first showed how to extract model
parameters from black-box oracles using targeted queries. When
the model is public, information about the training process can
be extracted, as shown by Wang et al. [50]. Fredrikson et al. [11]
leverage model characteristics to extract samples from the training
set using prediction confidences in white-box scenarios. Shokri

et al. [38] and Song et al. [40] propose membership inference at-
tacks using surrogate models and prediction confidences. Surrogate
models were also used by Papernot et al. [31] to craft adversarial
samples for the target model. Most of these attacks take advantage
of white-box access, and mitigations require a black-box setting.

Security of trusted enclaves. Our work inherits weaknesses of im-
perfect enclave implementations. Multiple works have shown that
microarchitectural side channels [3] threaten the confidentiality
and integrity of Intel SGX. The Foreshadow attack, presented by van
Bulck et al. [48], is a variant of Meltdown [25] that works against
trusted enclaves. Similarly, Chen et al. [6] adapted Spectre [23] to
trusted enclaves. Both attacks could compromise sealing or attes-
tation keys, but have since then been mitigated with microcode
updates following a responsible disclosure process.

Murdock et al. [28] use undocumented voltage regulation in-
structions in Intel processors to inject faults into enclave execution,
which can theoretically enable differential fault analysis [46] of the
AES keys used for sealing. The interface enabling this attack has
since been disabled with BIOS updates and microcode updates re-
flect this status in SGX quotes. A similar attack for ARM Trustzone
on Android devices has been proposed by Tang et al. [42].

The very recent load value injection attack [49] does not affect
our enclave code specifically as it only has a single level of indi-
rection and does not dereference any loaded value. Nevertheless,
we plan to update the enclave code generation to avoid return
instructions, which are weak points for several reasons.

Despite mitigation efforts on many layers, it seems that all cur-
rent variants of trusted enclaves are vulnerable to side channels
attacks. While these general issues of trusted enclaves prevail, our
approach is practical for scenarios where attackers do not possess
the capabilities to launch such sophisticated attacks.

6 DISCUSSION

This work proposes a new point in the design space for secure
inference on larger neural networks in untrusted domains. We take
advantage of a known phenomenon in transfer learning to achieve
model and test data confidentiality. The use of trusted enclaves
makes our work practical, as demonstrated with experimental ev-
idence. Our implied trust assumptions are shared by all existing
solutions using trusted computing. The risk of imperfect isolation
may subside as the technology matures and better trusted proces-
sors proliferate.

Several extensions of our proof-of-concept stand to reason. The
current implementation supports feed-forward DNNs only. The
inclusion of skip and recursion layers requires a more thorough
study of information leakages if such connections cross the bound-
ary of the enclaved part of the network. More complex connections
between layers, like in the ResNet architectures [17], complicate the
memory management for intermediate results inside the enclave.
Performance can be improved by using cache-adjusted data layouts
and SIMD instructions.

Concerning the high-level pipeline, the model architecture is
currently not confidential as the code is not encrypted. Using Intel’s
protected code loader would enable this, however at the cost of
increased vulnerability to attacks like LVI [49]. Conversely, the



ability to inspect the architecture of the black-box oracle can also
be seen as a feature which helps hold the server accountable.

For our current evaluation, we use a simple transfer learning
approach with a complete split between feature extractor and task-
specific classifier. This guarantees us that the feature extractor does
not leak any information about the training set, and enclaving the
classifier fully protects the task-specific 6. At the cost of increased
confidentiality risk, more granular transfer learning approaches can
be taken to improve the classification accuracy of the full model. As
the training happens before the model is passed to our pipeline, any
conceivable training approach is possible. Similarly, the model can
be split at any desired location. Both retraining and split location
influences the amount of information leakage, for which we have
no precise way of measurement at the moment. A reevaluation of
current black-box attacks [31, 45] with partially known models is a
possible avenue for future work.

Looking ahead, it might be worth exploring if there are useful
applications for an adapted eNNclave approach that hides the pa-
rameters of the central layers of autoencoders. This breaks our
current guarantees gained from using pre-trained feature extrac-
tors and requires more study of the information leakage properties.
Similar to using it for autoencoders, eNNclave could enable placing
black-boxes on untrustworthy nodes in heterogeneous architec-
tures for edge, fog, and cloud computing [9, 43].

7 CONCLUSION

We have presented eNNclave, a new way to solve the confidentiality
conflict for outsourced machine learning. This work is novel in its
goal to allow fast offline inference with confidential parameters,
while not drastically increasing the attack surface for model stealing
attacks. Client-side offline inference keeps test data confidential,
and the use of trusted enclaves protects the model parameters.
Our toolchain allows the user to cut a given TensorFlow model
between any two layers and generates enclave code for the last
layers. This flexibility enables new tradeoffs between inference
speed, model confidentiality, and accuracy. For example, our proof-
of-concept implementation makes inferences on a 24-layer deep
neural network with 150 k input dimensions in just over a second
by executing 5 dense layers in the enclave. We demonstrate that
sensitive information about the training set can be contained in
these enclaved layers at an accuracy loss as small as 3 percentage
points on an unbiased 67-class image recognition task.

While our measurements refer to Intel SGX, the generated en-
clave code is not specific to any platform. This somewhat mitigates
concerns of vulnerabilities in current SGX-enabled processors. It
seems possible to adapt eNNclave to any future trusted execution
environment, hopefully ones that deserve this name.
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A ADDITIONAL TABLES

Table 4: Inference times (average of 20 independent inferences, in s)

Model VGG-16 VGG-19 Text DNN

TensorFlow CPU  0.074 0.092 0.018
TensorFlow GPU 1.233 1.236 0.739

Table 5: Performance measurements (average of 20 independent inferences, in s)

Image recognition

VGG-16 VGG-19 Text analysis
# TF EE EI Total TF EE EI Total TF EE EI  Total
0 0074 - - 0.074  0.092 - - 0.092 o0.018 - - 0.018
1 0074 0.011  0.774 0.859 0.091 0.001  0.777 0.870 o0.018 0001 0778 0.797
2 0074 0.012 0774 0.859  0.091 0.036  0.782 0.909 o018 0003 0782 0.803
3 0073 0.399  0.778 1.250  0.091 0.076  0.774 0.941 0018 0003 0779 0.799
4 0073 0393 0.782 1.248  0.086 1.627  0.781 2.495 o018 0010 o078 0.807
5 0073 0.460  0.780 1.313  0.086 1.628  0.780 2.494 o018 o010 0778 0.805
6 0073 0.466  0.783 1.321  o0.086 1633 0777 2.497 o016 0369 0777 1.162
7 0072 0472 0778 1.322  0.084 5280 0778 6.141 o0.016 0369 0776 1.160
8 0.070 4117 0774 4.961 o0.082 8.931  0.779 9.793 o0.016 0370 0781 1.166
9 0.067 7771 0.777 8.615 0.080 12,586 0.780 13.445 o015 0441 0778 1.234
10 0.065 11418 0.779 12.263 0.078 16.230 0782 17.090 o.015 0440 0776 1.231
11 0.065 11429 0777 12.271 o0.078 16.237  0.782 17.096 0.014 0511 0780 1.306
12 0.058 26.194 0777 27.029 0.073 30.993  0.778 31.844 o015 0512 0780 1.307
13 0.052 40938  0.778 41.768  0.067 45758 0.778 46.603 o0.014 0548 0783 1.345
14 0.049 48310 0.777 49.135  0.061 60.512  0.777 61.351 0013 0547 0776 1.336
15 0.048 48316  0.783 49.147  0.058 67.883  0.778 68.719 0001 0564 0781 1.346
16 0.042 63.261  0.776 64.079  0.058 67.886  0.778 68.721 - - - -
17 0.036 78229  0.773 79.038 0.052 82.844  0.782 83.679 - - - -
18  0.032 85.695  0.777 86.504  0.047 97.809  0.778 98.634 - - - -
19  0.031 85.737  0.780 86.547 0042 112754 0779 113.575 - - - -
20 0023 100852 0779 101.655 0038 120228 0780 121.046 - - - -
21 0019 108433 0781 109.233 0038 120247 0780 121.065 - - - -
22 0017 108485 0779 109.281 0032 135380 0779 136.191 - - - -
23 0007 123807 0780 124.594 0.028 142960 0779 143.767 - - - -
24 0024 124527 0780 125.332 0026 142991 0782 143.799 - - - -
25 - - - - 0018 158332 0778 159.128 - - - -

26 - - - - 0244 159156 0778 160.178 - - - -

TF = TensorFlow, EE = enclave execution, EI = enclave instantiation
Suggested cutoff layers are marked with horizontal rules.



B CODE EXAMPLE

Generated enclave code for classifier:

4 int enclave_f(float *m, int s, float #*ret, int rs) {

41
42

Load sealed parameters —> 43

Model definition in Python:

# Public feature extractor
model = Sequential()
model.add(layers.Embedding(

NUM_WORDS ,

32,

input_length=SEQUENCE_LENGTH))
model.add(layers.SeparableConviD(

filters=64,

kernel_size=3,

padding="'same"',

activation='relu'))
model.add(layers.MaxPooling1D(pool_size=2))
model.add(layers.SeparableConviD(

filters=128,

kernel_size=3,

padding="same"',

activation='relu'))
model.add(layers.MaxPoolingl1D(pool_size=2))
model.add(layers.SeparableConviD(

44
45
46

47
48
49
50
51
52

53
54
55
56
57
58

59

60

61

62

int sts;

open_parameters();
float *xtmp@ = (floatx) malloc(600*xsizeof (float));
if(tmp@ == NULL){
print_err("\n\nENCLAVE ERROR:Could not allocate tmp@ of
size 600\n\n\n");
return 1;

float *tmpl = (floatx) malloc(600*sizeof (float));
if (tmpl == NULL){
print_err ("\n\nENCLAVE ERROR:Could not allocate tmpl of
size 600\n\n\n");
return 1;

float *params = (floatx) malloc(4762200*sizeof (float));
if (params == NULL){
print_err("\n\nENCLAVE ERROR:Could not allocate params
of size 4762200\n\n\n");
return 1;
}
load_parameters(params, 4762200); // load and unseal
weights and biases
if ((sts = matutil_multiply(m, 1, 7936, params+@, 7936,
600, tmp@))) // multiply with weights

filters=256 > return sts;
kernel size=3 6 if ((sts = matutil_add(tmp@, 1, 600, params+4761600, 1,
o . 600, tmp@))) // add biases
padding="'same"',
activation='relu')) 65 return sts;
tutil lu(tmpo, 1, 600); / f tivati
model .add(layers.MaxPooling1D(pool_size=2)) o matutil_relu(tmpo, 1, )3 // perform activation
67
model.add(layers.SeparableConviD . . . -
(lay P ( ——>68 //Layer dropout skipped as only active during training

filters=256,

kernel_size=3,

padding="'"same"',

activation='relu'))
model.add(layers.MaxPooling1D(pool_size=2))
model.add(layers.Flatten())

# Sensitive classifier
model.add(layers.Dense (600, activation='relu'))-
model.add(layers.Dropout (DROPOUT_RATE))
model.add(layers.Dense (150, activation='relu'))
model.add(layers.Dropout (DROPOUT_RATE))
model.add(layers.Dense (150, activation='relu'))
model.add(layers.Dense(1, activation='linear'))

VAV VA VE Vi VI VA VA VA VA VA VA VA VE VI VA VA VA VAVA VA VA VA Ve vV

69
70

71
72

73
74
75
76
77
78
79
80
81
82

Close parameter file — 83

84
85

load_parameters(params, 151);
if ((sts = matutil_multiply(tmp@, 1, 150, params+0, 150,
1, tmp1)))
return sts;
if ((sts = matutil_add(tmpl, 1, 1, params+150, 1, 1, tmpl
)))
return sts;
//linear activation requires no action

for(int i=0; i<rs; ++i)
ret[i] = tmp1[il; // copy values to return buffer

free(tmpo);
free(tmp1);
free(params);

close_parameters();
return 0;
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