
iNNformant: Boundary Samples as Telltale Watermarks
Alexander Schlögl

alexander.schloegl@uibk.ac.at

Department of Computer Science

University of Innsbruck

Austria

Tobias Kupek
∗

tobias.kupek@swarm-analytics.com

Swarm Analytics GmbH

Austria

Rainer Böhme

rainer.boehme@uibk.ac.at

Department of Computer Science

University of Innsbruck

Austria

ABSTRACT
Boundary samples are special inputs to artificial neural networks

crafted to identify the execution environment used for inference

by the resulting output label. The paper presents and evaluates al-

gorithms to generate transparent boundary samples. Transparency

refers to a small perceptual distortion of the host signal (i. e., a

natural input sample). For two established image classifiers, ResNet

on FMNIST and CIFAR10, we show that it is possible to generate

sets of boundary samples which can identify any of four tested mi-

croarchitectures. These sets can be built to not contain any sample

with a worse peak signal-to-noise ratio than 70 dB. We analyze the

relationship between search complexity and resulting transparency.

CCS CONCEPTS
• Computing methodologies → Machine learning; Neural
networks; • Security and privacy→ Digital rights management;
• Applied computing→ System forensics.

KEYWORDS
watermarking, neural networks, forensics, adversarial machine

learning

ACM Reference Format:
Alexander Schlögl, Tobias Kupek, and Rainer Böhme. 2021. iNNformant:

Boundary Samples as Telltale Watermarks. In Proceedings of the 2021 ACM
Workshop on Information Hiding and Multimedia Security (IH&MMSec ’21),
June 22–25, 2021, Virtual Event, Belgium. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3437880.3460411

1 INTRODUCTION
Recently it has been observed that the numerical predictions of neu-

ral networks (NNs) vary between different CPU microarchitectures

(MAs) [19]. This can be used in forensic investigations to identify

the execution environment used for predictions, or verify that a

prediction has been made on specific hardware.

These numerical differences may also offer novel ways to im-

plement digital rights management for trained machine learning

models. For instance, the owner of a model could verify if a given

∗
Work carried out while at the University of Innsbruck.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8295-3/21/06. . . $15.00

https://doi.org/10.1145/3437880.3460411

prediction has been generated on licensed hardware, which might

be equipped with a secure billing device. Predictions whose numer-

ical values indicate the use of another MA indicate that the billing

mechanism might have been bypassed fraudulently.

A major obstacle to this application is that the numerical dif-

ferences between MAs are tiny. They almost always disappear at

the last step of the inference pipeline when a real-valued soft-max

vector is quantized to a symbolical label. Boundary samples fix this

problem. These samples lie in the area between decision bound-

aries that arise from the numerical differences betweenMAs, as was

observed in [19]. Boundary samples are then classified differently

depending on the execution environment, allowing the owner of a

model in the above example to probe the hardware used for predic-

tion. In the best case, any deviation from the licensed hardware’s

MAs is detectable by the class label only.

Boundary samples are barely researched. It may appear surpris-

ing even that they exist and can be found efficiently as claimed

in [19]. This work adds another consideration, namely the trans-

parency of boundary samples. This is relevant if, in the above

example, the model owner wants to probe the inference pipeline

inconspicuously in order to avoid that the licensee can process

obvious boundary samples in a different pipeline (the legitimate

one) than the bulk of organic samples. We propose to generate

transparent boundary samples as perturbations of natural input

samples and measure the distortion by the peak signal-to-noise

ratio (PSNR).

b0 b1

Boundary Samples

Adversarial Samples

Figure 1: Input space for adversarial and boundary samples,
for two given decision boundaries b0 and b1.

There are striking parallels to digital watermarking [4]: the nat-

ural input sample is the host signal and the perturbation is a telltale
watermark, i. e., a special case of fragile watermark designed to

indicate the type of processing applied to the watermarked sig-

nal [3, 10]. Note that we do not aim for undetectability in the sense

of secure steganography. The facts that boundary samples are rare,

and good ones are classified differently by any two MAs, seem to

https://doi.org/10.1145/3437880.3460411
https://doi.org/10.1145/3437880.3460411

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Alexander Schlögl, Tobias Kupek, and Rainer Böhme

preclude any attempt to make them undetectable for anyone who

can run the model on multiple MAs.

There are also parallels to evasion attacks in adversarial machine

learning [16]. Figure 1 gives some intuition on the difficulty of

finding boundary samples compared to the problem of finding

adversarial samples. Both problems have in common that an input

in the white region has to be perturbed to fall into another region

subject to small perceptual distortion. While the solution space for

adversarial samples is the entire blue area, boundary samples must

hit the orange region. In fact, adversarial samples try to move as

“deep” as possible (given the perturbation constraints) into the blue

area in order to be transferable [21]. In contrast, boundary samples

must hit the small orange area between the decision boundaries

that arises purely from numerical differences between MAs.

This short paper is organized as follows. The next section presents

our generation method for boundary samples, which is a modifica-

tion of FGSM, a known search algorithm for generating adversarial

samples [6]. Section 3 evaluates the effectiveness and efficiency

of the proposed algorithm on two standard pairs of dataset and

model architectures (FMNIST with ResNet20 and CIFAR10 with

ResNet32). We report runtime measurements (in terms of iterations

broken down by MAs), the resulting success rates, and distortions.

Section 4 discusses related work. The concluding Section 5 points

out limitations and shows directions for future work.

2 GENERATING BOUNDARY SAMPLES
Our method makes the following assumptions. We have white-box

access to a trained feed-forward deep neural network and oracle

access to predictions and gradients from that network on a closed

set of relevant MAs. Access costs vary between oracles. We assume

that oneMA is local and gives us a cheap (fast) oracle. All other MAs

are remote and may in practice be more costly (slower). Moreover,

we require access to a number of test samples drawn from the

training distribution. Transparency is defined by the distortion

between a given test sample (the starting point for the iterative

algorithms) and the resulting boundary sample. We consider a set

of boundary samples as fully identifying if it contains at least one

sample that is predicted with a unique label for each MA in the set.

We proceed in two steps. In the next subsection, we examine

the case of a binary decision problem between two candidate MAs.

Then, in Section 2.2, we generalize to the case of identifying one

out of n candidate MAs. This is still a binary decision problem, but

the solution space is much more constrained.

2.1 The 1 vs 1 Case
The problem of differentiating between two candidate MAs is equiv-

alent to constructing a sample that falls in the orange regions in

Figure 1. We split the generation into a local and a remote phase.

Local phase. In the local phase we try to get as close to the deci-

sion boundary as possible. We do this with the modified iterative

fast-gradient-sign method (i-FGSM) [6]. FGSM was chosen based

on the intuition that many small perturbations lead to a lower mean

square error (and hence higher PSNR) than fewer larger perturba-

tions. For modelm, input x, and a step size α , the i-th FGSM step

works as follows,

xi = xi−1 + α sign (∇xm(xi−1)) . (1)

Compared to FGSM our algorithm flips the sign based on the

correctness of the prediction, and reduces the step size as we ap-

proach the decision boundary. Varying the perturbation’s sign lets

us approach the decision boundary even after overshooting. As we

approach the decision boundary, the confidence difference δ
conf

between the first and second predicted classes decreases. While

the gradients’ norms could be used to judge the distance to the

decision boundary, we used δ
conf

as an approximate distance mea-

sure. Reducing the step size along with δ
conf

allows us to gradually

approach the decision boundary, until a termination condition is

met. The modified FGSM step looks as follows,

xi = xi−1 + c δconf α sign (∇xm (xi−1)) , (2)

where c is the correctness sign. It takes value 1 if xi−1 is misclassi-

fied, and −1 otherwise.

As local predictions are cheaper than remote predictions, we

want to approach the decision boundary as close as possible with

local steps; specifically to a confidence difference of less than 10
−6
,

or ideally 10
−7
. Choosing the right α is crucial. If it is too high, the

sample bounces around the decision boundary without approaching

it. If it is too low, the sample movement stalls as the confidence

difference vanishes. This can be detected if the predictions are

identical in two consecutive steps. In this case, we multiply δ
conf

with a scaling factor. We increase δ
conf

exponentially in this fashion

until the predictions change again, at which point δ
conf

is reset to

the new confidence difference. We use 10
−4

as value for α .

Remote phase. Oncewe are sufficiently close with the local oracle,

we use gradients from our remote oracles to further refine the

boundary sample. In this remote phase, one of three cases occurs:

(1) The label flips on neither instance.

(2) The label flips on one instance, but not the other.

(3) The label flips on both instances.

In the second case, we have found a boundary sample and terminate.

Note that the third case is symmetric to the first, and our handling

is identical. The possible cases are shown in Figure 2, where дi
denotes the gradient for instance i .

b0 b1

д0

д1

x

(a) Same class predicted

b0 b1

д0 д1
x

(b) Different class predicted

Figure 2: Possible cases for boundary sample predictions.

When both instances predict the same class, we further approach

the closest decision boundary using the same modified FGSM step

as in the local phase. Our remote step requests predictions and

gradients from both oracles, and then uses the one where the corre-

sponding δ
conf

is smaller for the FGSM step shown in Equation (2).

iNNformant: Boundary Samples as Telltale Watermarks IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

If the labels from both instances flip together, we simply continue

as c will correct the direction of our perturbation even if the closest

boundary is not the same as before. This process is repeated until

either a successful boundary sample is generated or a maximum

number of iterations is reached. The full algorithm is shown in

Algorithm 1, where the lines relevant to the 1 vs 1 case are high-

lighted.

Remarks. The local and remote phases are very similar. In princi-

ple, one could also omit the local preparation entirely and start with

a clean sample in the remote phase. As we used cloud instances

for our remote oracles, remote predictions were slower and much

more costly than the local predictions.

2.2 The 1 vs n Case
We can use the same approach as in Figure 2 to identify a single

MA from a set of n known MAs. The only relevant modification

concerns the selection of the target gradient. The choice of target

boundary is given by the requirement of a 1 vs n boundary sample:

one MA results in a different label compared to all others. This

requires our boundary sample to lie past the decision boundary for

one MA, but before the decision boundary for all others, or vice

versa. Figure 3 highlights areas around the decision boundaries that

uniquely identify MAs.

b0 b1 b2 b3

identifies A0

identifies A3

not identifying
class u class v

Figure 3: Uniquely identifying areas for multiple instances.

The 1 vs n boundary sample generation process discussed here is

not targeted. This means we cannot choose the MA to be identified,

but let the algorithm find any MA that can be identified from all

others in the set. This is not a big limitation as we shall see in

Section 3 that different starting samples let us identify different

MAs, and each MA is singled out sufficiently often. Hence, we

can repeatedly run the algorithm until we find a boundary sample

which identifies any desired MA.

The algorithm proceeds as follows. As before, we first approach

the nearest local decision boundary as close as possible. Starting

with the local oracle ensures that the farthest distance is traversed

with cheap (fast) queries. We then request predictions from the

remote oracles, which tell us where our current sample lies with

regard to all MAs’ decision boundaries. This step is shown in Fig-

ure 4a, where the decision boundaries are indexed with c and r
for “left” and “right” for convenience. We partition all predictions

according to their label and select the smallest partition (Figure 4b).

From the smallest partition, we choose the second farthest deci-
sion boundary, i. e., the one with the second highest δ

conf
, as our

target (Figure 4c). Passing the second furthest decision boundary

leaves only one label flipped from all others (Figure 4d), meaning

the generated boundary sample uniquely identifies an MA (the

rightmost MA in the example). Figure 4 illustrates our algorithm,

and Algorithm 1 gives the pseudocode.

Remarks. We optimize our target selection for cases when all

MAs return the same label, in which case we approach the clos-

est decision boundary. This happens in line 12. Moreover, in our

experiments we had two oracles each for several MAs. We thus

had to modify the exit condition to not only exit if a single label is

different from all others. We also checked whether the labels from

an entire MA are different from all others, but identical to each

other. This special case is included in line 10.

bl1bl2bl3 br 1 br 2

x

(a) Get predictions

bl1bl2bl3 br 1 br 2

x

(b) Pick smallest partition
bl1bl2bl3 br 2br 1

x

(c) Approach nearer boundary

bl1bl2bl3 br 1 br 2

x

(d) Boundary sample found

Figure 4: Steps for generating 1 vs n boundary samples.

Algorithm 1 Untargeted boundary sample generation.

1: procedure GenerateBoundarySample(x, servers)
2: for i ← 1, ..., local_max do ▷ local phase

3: predict x locally

4: if δ
conf
< target then break

5: x← x + l δ
conf

α sign (∇xm (x))
6: for i ← 1, ..., remote_max do ▷ remote phase

7: results← predict x on each server
8: groups← results grouped by the predicted label l
9: д← smallest group in groups
10: if д contains a single MA then return x

11: if size (д) = n then
12: r ← result ∈ д with smallest δ

conf

13: else
14: r ← result ∈ д with second highest δ

conf

15: x← x + r .l r .δ
conf

α sign (∇xm (x))

3 EXPERIMENTAL EVALUATION
Setup. In our experiments we set n = 4. Table 1 lists the MAs

used in all our experiments. These are all MAs available as Google

Cloud instances at the time of writing, and the grouping is based

on successful identifications reported in prior work [19]. For our

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Alexander Schlögl, Tobias Kupek, and Rainer Böhme

Table 1: Overview of the architectures used in this work.

Label CPU Architecture

MA1 AMD Rome

MA2 Intel Sandy / Ivy Bridge

MA3 Intel Haswell / Broadwell

MA4 Intel Skylake / Cascade Lake

evaluation we will focus on the 1 vs. n case as it is the more chal-

lenging one. We chose image classification as task and selected

two common datasets of different complexity: FMNIST [24] and CI-

FAR10 [9]. Both datasets contain images of 10 classes. FMNIST has

an input dimension of 28×28×1. CIFAR10 has an input dimension of

32×32×3. We employ the established ResNet architecture [8] of two

depths, namely 20 layers for FMNIST and 32 layers for CIFAR10,

trained for 150 epochs each. The Keras interface of TensorFlow

version 2.3.0 was used on all MAs to run predictions. We set up

a Docker container based on tensorflow/tensorflow:2.3.0 to

ensure consistency of every component above the operating system.

Using Algorithm 1, we attempted to generate boundary samples

from 400 randomly selected test images per dataset. The termination

conditions were set to 2000 for local_max and 500 for remote_max.
We could confirm that all processes were deterministic on each MA

(but certainly not across them).

Success. Our overall success rates were 70.5 % for FMNIST, and

28.25 % for CIFAR10. Table 2 breaks down the successful termina-

tions by the MAs they can identify. This confirms that an untar-

geted algorithm is sufficient to generate a set of boundary samples

uniquely identifying all MAs, if one runs it repeatedly on different

input samples until a matching boundary sample is produced. Even

in the worst case, when identifying MA4 with FMNIST, a suitable

boundary sample is found with more than 99 % probability after 28

successful runs, or 40 runs if one accounts for the failure rate of

29.5%. (Values for CIFAR10 are 24 and 85, respectively.)

Table 2: Distribution of identifiedmicroarchitectures (in per-
cent). MA numbers are scaled to number of successes.

Model Success Failure

MA1 MA2 MA3 MA4

FMNIST 70.50 29.50
29.54 28.47 26.33 15.66

CIFAR10 28.25 71.75
21.24 28.32 32.74 17.7

Transparency. Table 3 reports the distribution of PSNRs for suc-

cessful boundary samples broken down by dataset. The PSNR val-

ues for most samples from both datasets are above 45 dB and thus

in the range of high-quality lossy image compression [23]. This

demonstrates that it is possible to generate a fully identifying set of

boundary samples whose elements are not obviously distinguish-

able from natural samples by a human observer. By choosing the

most transparent boundary samples from the experiments, we could

compose fully identifying sets with a minimum PSNR as high as

70.93 dB for FMNIST and 77.05 dB for CIFAR10.

Boundary samples for CIFAR10 exhibit on average 10 dB higher

PSNR (and thus better transparency) than FMNIST. While we can-

not causally explain this, it might be related to the larger input

dimension which gives more room to distribute the perturbations

over more pixels. Another co-factor is the systematic difference in

search time, which we discuss next.

Table 3: PSNR distribution of boundary samples (in dB).

Model Min Q1 Median Mean Q3 Max

FMNIST 38.71 46.37 50.10 52.11 55.75 83.49

CIFAR10 48.28 54.76 85.76 60.82 66.65 81.48

Complexity. Figure 5 shows box plots of the distribution of the

number of local and remote steps for both datasets. Both datasets

require a few hundred local steps,
1
but the number of subsequent

remote steps varies substantially. While a few dozen iterations are

sufficient for FMNIST, the number of remote steps varies widely

for CIFAR10. Overall, 15.3% of the successful boundary samples for

CIFAR10 required more remote steps than local steps, whereas this

happened only once for FMNIST.

FMNIST
local

FMNIST
remote

CIFAR10
local

CIFAR10
remote

0

100

200

300

400

500

Figure 5: Distribution of the number of local and remote
steps across samples.

Favorable class pairs. Drilling down to the level of class labels, we
ask if certain labels are prevalent as identifying or contrast labels.

Recall that the identifying label is the label assigned to the MA

singled out by a boundary sample. Likewise, the contrast label is the

one assigned to all other MAs. Figure 6 depicts confusion matrices

with identifying labels in rows and contrast labels in columns.

For FMNIST, the most common identifying label is Shirt, and
the most common contrasting labels are T-shirt/Top, Pullover, Dress,
1
The plot does not show one outlier with 1200 local steps for FMNIST.

iNNformant: Boundary Samples as Telltale Watermarks IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

0 0 2 3 0 2 11 0 0 0

0 0 0 3 0 0 2 0 0 0

12 5 0 9 11 0 9 0 6 1

0 5 4 0 4 0 5 0 1 0

0 1 10 2 0 0 10 0 0 0

0 0 0 0 0 0 0 13 1 1

14 9 29 15 21 6 0 0 5 0

0 0 0 1 0 8 0 0 0 14

0 0 0 1 0 2 1 0 0 0

0 0 0 0 0 3 0 18 1 0

FMNIST

0 2 2 1 0 0 1 0 12 7

1 0 0 0 0 0 1 0 0 4

7 1 0 3 4 6 2 2 0 0

1 0 4 0 0 5 2 1 0 0

0 0 6 1 0 1 1 2 1 0

1 0 5 2 0 0 0 2 0 0

1 1 1 1 1 0 0 0 2 0

2 0 1 0 0 0 0 0 0 0

3 3 0 1 0 0 1 0 0 1

0 2 0 0 0 0 0 0 1 0

CIFAR10

Figure 6: Identifying (rows) and contrast labels (colums).
Cell values indicate the frequency of cooccurrence.

and Coat, which are all closely related in shape. For CIFAR, the

dominance is less pronounced, with the most common label flips

being from Airplane to Boat and Truck, which are again of a similar

general shape. The visual similarity of pairs of boundary sample

classes can potentially be attributed to the high difficulty of finding

boundary samples compared to adversarial samples. Figure 7 shows

a comparison between natural and boundary sample, including the

predicted labels and prediction confidences.

Natural Sample

Architecture Label Confidence

Intel Coffee Lake Shirt 95.59

(Local)

Boundary Sample Architecture Label Confidence

AMD Rome Shirt 50.000 11

Sandy Bridge Coat 49.999 96

Ivy Bridge Coat 49.999 96

Haswell Shirt 50.000 08

Broadwell Shirt 50.000 08

Skylake Shirt 50.000 04

Cascade Lake Shirt 50.000 04

Figure 7: FMNIST boundary sample visualization. Perturba-
tions are amplified by a factor of 50 to aid visual inspection.

Multivariate analysis. The scatterplots of successful boundary
samples in Figure 8 visualize the relationship between the complex-

ity of finding a suitable boundary sample and the resulting trans-

parency (top panels). The complexity is further broken down into

local and remote steps in the bottom row. Unsurprisingly, longer

search implies lower quality as difficult samples need stronger

perturbations to reach a class boundary. This interpretation is sup-

ported by the positive association between local and remote steps,

indicating that the difficulty inherent to the sample determines the

Total Steps

0 100 200 300 400 500 600 700 800

T
o
t
a
l
P
S
N
R
[
d
b
]

40

50

60

70

80

FMNIST

Total steps

0 100 200 300 400 500 600 700 800

T
o
t
a
l
P
S
N
R
[
d
b
]

40

50

60

70

80

CIFAR10

Local steps

0 100 200 300 400 500

R
e
m
o
t
e
s
t
e
p
s

0

100

200

300

400

Local steps

0 100 200 300 400 500

R
e
m
o
t
e
s
t
e
p
s

0

100

200

300

400

Figure 8: Relation between transparency and complexity.

search effort. However, the relation between iterations and (lower)

quality is much more pronounced for FMNIST than for CIFAR10.

4 RELATEDWORK
Adversarial machine learning has become a vast field in the past

couple of years. As it is tangential to our objective, we refer the

reader to the authoritative surveys and taxonomies [2, 16]. In their

terminology, boundary samples would represent attacks against

supervised machine learning models performed by an iterative eva-

sion during the inference phase. Another relation is that boundary

samples can serve as oracles in gray-box scenarios.

The (still smaller) literature on watermarking neural networks

can be broadly structured along two purposes. First, to protect

trained models against unauthorized redistributions; second, to

re-identify models in a black-box or gray-box scenario [16], where

only parts of the pipeline are known and accessible. Our work is

closer to the latter, but assumes full knowledge of the model and

seeks to identify the execution environment in which it is run.

Uchida et al. [22] propose a framework for embedding water-

marks into neural networks. Their method promises to generate

a unique signature of the model by adjusting weights in the train-

ing phase utilizing a parameter regularizer. Recent work takes ad-

vantage of backdoors inserted in the training phase to activate

a detection mechanism with special inputs [1, 12, 25]. Namba et

al. [15] combine multiple techniques to implement watermarks,

which are reportedly more robust against model and query modi-

fications. A different approach is to embed a watermark into the

distribution of the data abstraction obtained in different layers [18].

In order to use watermarking in a black-box scenario, Guo et al. [7]

proposed to train a secret message mark into the model, which

causes misclassification of certain marked inputs, akin adversarial

IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium Alexander Schlögl, Tobias Kupek, and Rainer Böhme

samples. Shumailov et al. [20] show a method to embed keys into

deep neural networks. Although they focus on defending against

adversarial samples, the method could also be of potential use for

watermarking. Merrer et al. [14] use adversarial samples to identify

the characteristics of the hyperplane of individual models. Their

generation algorithm is similar to ours (and inspired from the same

original method [6]), although it has laxer restrictions.

All approaches discussed in the paragraph above use some form

of keys, which are embedded in the model during the training phase.

The ease of securing keys embedded in neural networks has been

challenged in last year’s workshop [11]. The approach presented

here is keyless. We are not aware of any other work trying to exploit

numerical deviations between execution environments.

5 DISCUSSION AND FUTUREWORK
We have proposed algorithms to generate sets of transparent bound-

ary samples that can identify whichmicroarchitecture (MA) is being

used for predictions, based on the output label alone. An evaluation

of 400 samples from two datasets using ResNet instances of two

depth results in success rates between 28.25 % and 70.50 %. The suc-

cessful samples span all four MAs considered. This means replacing

unsuccessful attempts is a valid strategy. Transparency in terms

of PSNR was almost always at least as good as qualities accepted

as imperceptible in the literature on lossy image compression (40–

50 dB). We showed how specifically composed sets can reach PSNRs

of 70 dB and higher. The goal of this paper to establish transparent

boundary samples has thus been achieved.

Nevertheless, there is much room for future work. The two

datasets in our study exhibited different difficulty in finding bound-

ary samples. A third dataset, ImageNet [5] with much larger input

space and higher model complexity has not given us a single bound-

ary sample in reasonable time. We also only covered the closed

set identification scenario, where a set of candidate MAs exists.

Finding boundary samples for larger models, input sizes, (partially)

unknown models, and without candidate MAs are open problems.

Another knob to turn is improving the algorithm. The presented

version, inspired by FGSM, is simple, shown to be effective for

small instances, but in no way optimal. For example, we do not

even consider PSNR as an objective. One could take inspiration

from other algorithms for finding adversarial samples, PGD [13]

and JSMA [17], which constrain the infinity norm or combine two

criteria in a so-called saliency map, respectively. Devising an al-

gorithm that finds boundary samples targeted to a specific MA is

another possible direction.

While boundary samples may enable new forms of digital rights

management for trained models, more applications would be pos-

sible if the resulting boundary samples survived quantization to

eight bit. This and high PSNR are conflicting goals.

This work has explored the low-hanging fruits. We used tractable

models for a handful of accessible MAs. This ad-hoc approach

reached limits in terms of resolution (microarchitecture refinements

fall together), scope (GPUs not considered), and complexity (both

very small and very large models and input dimensions). Better

methods can most likely improve on any of these directions. But

where are fundamental limits? In short, the boundaries of boundary

samples are not yet understood.

ACKNOWLEDGMENTS
The authors thank Nora Hofer for her valuable feedback and help

in preparing the camera-ready version of this paper.

REFERENCES
[1] Yossi Adi, Carsten Baum, andMoustapha Cissé et al. 2018. Turning YourWeakness

Into a Strength:Watermarking DeepNeural Networks by Backdooring. InUSENIX
Security Symposium. 1615–1631.

[2] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep

learning in computer vision: A survey. IEEE Access 6 (2018), 14410–14430.
[3] Matthias Carnein, Pascal Schöttle, and Rainer Böhme. 2016. Telltale Watermarks

for Counting JPEG Compressions. In Media Watermarking. 1–10.
[4] Ingemar Cox,MatthewMiller, and Jeffrey et al. Bloom. 2007. DigitalWatermarking

and Steganography.
[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-

geNet: A Large-Scale Hierarchical Image Database. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR.

[6] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In International Conference on Learning Repre-
sentations (ICLR), Y. Bengio and Y. LeCun (Eds.).

[7] Jia Guo and Miodrag Potkonjak. 2018. Watermarking deep neural networks

for embedded systems. In International Conference on Computer-Aided Design
(ICCAD). 133.

[8] Kaiming He, Xiangyu Zhang, and Shaoqing Ren et al. 2016. Deep Residual

Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778.

[9] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Master’s thesis. Univ. of Toronto.

[10] Deepa Kundur and Dimitrios Hatzinakos. 1999. Digital Watermarking for Telltale

Tamper Proofing and Authentication. Proc. IEEE 87, 7 (1999), 1167–1180.

[11] Tobias Kupek, Cecilia Pasquini, and Rainer Böhme. 2020. On the Difficulty of

Hiding Keys in Neural Networks. In ACM Workshop on Information Hiding and
Multimedia Security (IH & MMSec). 73–78.

[12] Zheng Li, Chengyu Hu, and Yang Zhang et al. 2019. How to prove your model be-

longs to you: a blind-watermark based framework to protect intellectual property

of DNN. In Annual Computer Security Applications Conference (ACSAC). 126–137.
[13] Aleksander Madry, Aleksandar Makelov, and Ludwig Schmidt et al. 2018. To-

wards Deep Learning Models Resistant to Adversarial Attacks. In International
Conference on Learning Representations (ICLR).

[14] Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. 2020. Adversarial frontier

stitching for remote neural network watermarking. Neural Computating and
Applications 32, 13 (2020), 9233–9244.

[15] Ryota Namba and Jun Sakuma. 2019. Robust Watermarking of Neural Network

with ExponentialWeighting. InAsia Conference on Computer and Communications
Security (AsiaCCS), S. Galbraith, G. Russello, and W. Susilo et al. (Eds.). 228–240.

[16] Nicolas Papernot, Patrick D. McDaniel, and Arunesh Sinha et al. 2018. SoK:

Security and Privacy in Machine Learning. In IEEE European Symposium on
Security and Privacy (EuroS&P). 399–414.

[17] Nicolas Papernot, Patrick D. McDaniel, and Somesh Jha et al. 2016. The Limita-

tions of Deep Learning in Adversarial Settings. In IEEE European Symposium on
Security and Privacy (EuroS&P). 372–387.

[18] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2019. DeepSigns: An

End-to-End Watermarking Framework for Ownership Protection of Deep Neural

Networks. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 485–497.

[19] Alexander Schlögl, Tobias Kupek, and Rainer Böhme. 2021. Forensicability of

DeepNeural Network Inference Pipelines. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP).

[20] Ilia Shumailov, Yiren Zhao, Robert Mullins, and Ross Anderson. 2020. Towards

Certifiable Adversarial Sample Detection. In ACM Workshop on Artificial Intelli-
gence and Security (AISec). 13–24.

[21] Christian Szegedy, Wojciech Zaremba, and Ilya Sutskever et al. 2014. Intriguing

Properties of Neural Networks. In International Conference on Learning Represen-
tations (ICLR).

[22] Yusuke Uchida, Yuki Nagai, and Shigeyuki Sakazawa et al. 2017. Embedding Wa-

termarks into Deep Neural Networks. In International Conference on Multimedia
Retrieval (ICMR), B. Ionescu, B. Sebe, and J. Feng et al. (Eds.). 269–277.

[23] Stephen T. Welstead. 1999. Fractal and Wavelet Image Compression Techniques.
[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A novel

image dataset for benchmarking machine learning algorithms. http://arxiv.org/

abs/1708.07747 arXiv Computing Research Repository (CoRR), abs/1708.07747.

[25] Jialong Zhang, Zhongshu Gu, and Jiyong Jang et al. 2018. Protecting Intellectual

Property of Deep Neural Networks with Watermarking. In Asia Conference on
Computer and Communications Security (AsiaCCS). 159–172.

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	Abstract
	1 Introduction
	2 Generating Boundary Samples
	2.1 The 1 vs 1 Case
	2.2 The 1 vs n Case

	3 Experimental Evaluation
	4 Related Work
	5 Discussion and Future Work
	Acknowledgments
	References

