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Game Theory and Adaptive Steganography
Pascal Schöttle and Rainer Böhme

Abstract—According to conventional wisdom, content-adaptive
embedding offers more steganographic security than random
uniform embedding. We scrutinize this view and note that it
is barely substantiated in the literature as only recently adaptive
steganographic systems are tested against an attacker who
anticipates the adaptivity and incorporates this knowledge into
her detection strategy. For a better theoretical understanding of
strategical embedding and detection, we propose a game-theoretic
framework to study adaptive steganography while taking the
knowledge of the steganalyst into account. We instantiate the
framework with a stylized cover model and study both parties’
optimal strategies. The model has a unique equilibrium in mixed
strategies, which depends on the heterogeneity of the cover source.
We add realism by introducing imperfect recoverability of the
adaptivity criterion and prove that naı̈ve adaptive embedding—
the strategy implemented in many practical schemes—is only
optimal if perfect steganography is possible or if the adaptivity
criterion is not recoverable at all. In practice, where steganogra-
phy is imperfect and adaptivity criteria are partially recoverable,
the optimal embedding strategy is between naı̈ve adaptive and
random uniform embedding.

Index Terms—Adaptive Steganography, Game Theory, Security

I. INTRODUCTION

STEGANOGRAPHY enables undetectability, the protection
goal associated with concealing the very existence of a

secret message by hiding it in inconspicuous cover data, such
as digital media [1]. In a very general sense, cover objects are
points in a high-dimensional space, which is partitioned, often
key-dependent, into disjoint regions that map to the elements
of the hidden message space. A (minimal) steganographic
embedding function takes as inputs a message and a key. It
outputs a point within the associated region. Steganalysis, the
counter-technology, tries to detect hidden messages by deciding
whether an observed object is “plausible”, i. e., if it is drawn
from the distribution governing the cover generation process.

Steganography is perfect if the embedding function preserves
the cover distribution [2]. This requires knowledge of the
distribution or a sampler and computational effort exponential
in the size of the message space. However, for empirical covers
like digital media, the cover distribution is unknown (and
arguably unknowable [3]). In practice, the high-dimensional
space is sparsely populated with empirical covers and the
hidden message space is too large for rejection sampling, a
method that draws covers until one is found in the desired
region [4]. Therefore, the standard approach in steganography
is to take a given cover and move it into the region of the
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hidden message by slightly modifying its coordinates (e. g.,
pixel values of an image, samples of an audio file).

Simple coding allows the steganographer to partition the high-
dimensional space over the message space such that embedding
a given message has many possible solutions [5], [6], [7].
Adaptive embedding (also known as content-adaptive) increases
the steganographic security by selecting a solution that moves
the cover along those dimensions of the high-dimensional space
that reveal the least information about the fact that a message
has been embedded to a potential attacker (called steganalyst).

Because neither the steganographer nor the steganalyst know
the cover distribution, both must resort to local models of
the unknown joint distribution and make local decisions. This
leaves both parties with choices. In adaptive embedding, the
steganographer chooses along which dimensions the cover
should be moved to the message region. The steganalyst
chooses element weights to aggregate local evidence into a
global decision. Both choices are clearly interdependent and
jointly affect the security of the steganographic communication.
Therefore, both choices have to be strategic, i. e., anticipating
the opponent’s choice. This suggests that adaptive steganogra-
phy and optimal adaptive steganalysis are best studied in the
context of game theory, a well-established framework to model
situations in which two (or more) parties act strategically [8].

This article extends our seminal work on adaptive steganog-
raphy and game theory [9] and makes several contributions.
Consistent with recent empirical results [10], [11], the theoret-
ical analysis of the model we propose predicts that adaptive
steganography does not improve security against a strategic
adversary. In addition, using the solution concept of Nash
equilibria, we can identify the optimal adaptive embedding
strategy, which maximizes the security against detectors that
anticipate adaptive embedding. We define heterogeneous cover
sources, and show that if they do not allow perfect embedding,
this strategy is strictly superior to naı̈ve adaptive and random
uniform embedding, commonly used in practice.

Specifically, these results are derived from a universal frame-
work for the theoretical analysis of adaptive steganography. By
instantiating this framework, we introduce a stylized model of
a cover source. This model captures important characteristics
of real covers but is simple enough to obtain closed-form
solutions to the resulting game for a fixed local embedding
operation and a fixed (locally optimal) detection rule. For the
sake of simplicity, earlier models assumed that the steganalyst
is capable of perfectly recovering the most likely embedding
positions. We relax this assumption by adding the recovery
rate to our model, which expresses the fraction of embedding
positions the steganalyst is able to recover. This brings the
game-theoretic models one step closer to reality.

Here is the outline of this article: Section II defines the
general game-theoretic framework including terminology and
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notation. Section III presents our specific model and proves its
relevant properties. Section IV derives an analytical solution
under the assumption of perfect recoverability, which is then
relaxed in Section V. The main results are discussed with
numerical examples in Section VI. We establish relations to
prior art in Section VII. Section VIII concludes.

II. FRAMEWORK

We first define our framework formally and then illustrate it
with an example for image steganography in Section II-E. We
refer to [12] for a gentle introduction to digital steganography.

A. Notation

We write random variables as upper-case letters, their realiza-
tions (and constants) in lower case. Vectors, shorthand for one-
dimensional arrays, are typeset boldface x = (x0, . . . , xn−1),
with n implicit. Following the notation in [1], superscript (0)

in x
(0)
i denotes a symbol before embedding and superscript

(1) in x(1)
i denotes a symbol after embedding. By extension,

superscript (ā) in x(ā)
i means that the symbol has been changed

by embedding with probability ā and x(1)
(i) denotes a stego

object where only position i has been changed. P0 is the
probability distribution of the cover source. P1 is the probability
distribution of stego objects. P(xi) is the probability distribution
after embedding only in the i-th element. We use the standard
notation for Binomial coefficients, i. e.,

(
n
k

)
:= n!

k!(n−k)! .

B. Definitions

To study adaptive steganography in a general framework,
we formally define its key components.

Definition 1 (Cover). A vector x(0) = (x
(0)
0 , . . . , xn−1

(0)) of
n discrete symbols is called cover, if it is a realization of the
cover source X(0) drawn according to P0. Every symbol xi(0)

of the cover can take values from the cover alphabet X.

An embedding function is a key-dependent mapping of cover
x(0) and message to a stego object x(1). To study adaptive
embedding, we decompose the embedding function into atomic
operations that modify individual cover symbols.

Definition 2 (Embedding Operation). A function emb(·) that
takes as input a cover symbol x(0)

i and outputs the corre-
sponding symbol x(1)

i with different steganographic semantic
is called embedding operation.

Without loss of generality, we assume a one-to-one mapping
between cover symbols and bits carrying steganographic
semantic. These bits are typically an encrypted and encoded
representation of the message.

For a given P0 and a uniform prior over the key space, P1

depends on the embedding function. The Kullback–Leibler
divergence (KLD) between P0 and P1 is an information-
theoretic measure of steganographic security with regard to
undetectability [2]. We leverage this to distinguish between
homogeneous and heterogeneous cover sources.

Definition 3 (Homogeneous vs Heterogeneous Cover Source).
Cover source X(0) is called homogeneous for a fixed em-
bedding operation, if for every i, j ∈ {0, . . . , n− 1}, i 6= j,
and for any subset of the cover space and the corresponding
subsets of the stego space, it holds that KLD(P0,P(xi)) =

KLD(P0,P(xj)). Otherwise, X(0) is called heterogeneous.

This definition implies that homogeneous cover sources
offer the same security regardless of where the embedding
changes are made. For typical embedding operations, all i. i. d.
and the Markov cover models in [13] are homogeneous cover
sources. Because adaptive steganography exploits variations in
detectability between embedding positions, we need to model
heterogeneous cover sources. In this case, the security impact
of changing individual cover symbols may depend on the
realization x(0). We define a notion of suitability for embedding
per position and per cover by decomposing the KLD measure
into differences in the likelihood of hypothetical stego objects.

Definition 4 (Suitability). Position i of cover x(0) is more
suitable for embedding than position j, if the stego object x(1)

(i)
is a more likely realization of the cover distribution P0 than
the stego object x(1)

(j) , i. e., if P0

(
x

(1)
(i)

)
> P0

(
x

(1)
(j)

)
.

This definition is agnostic about multiple embedding changes
appearing together, a common assumption in the literature [14].

Since P0 is unknown for empirical cover sources, practical
adaptive embedding functions use an adaptivity criterion to
approximate the suitability of individual embedding positions.

Definition 5 (Adaptivity Criterion). A family of tractable
functions, e. g., ζi : Xn×Θ→ R, is called adaptivity criterion
if it establishes an order of all n embedding positions in a
cover x(0) by their approximate suitability. More specifically,
ζi(x

(0),θ) > ζj(x
(0),θ) implies that, to the best of the

steganographer’s knowledge, position i appears more suitable
for embedding than position j.

Definitions 4 and 5 require some reflection.

Remark 1. The adaptivity criterion may use side information
θ ∈ Θ to improve the quality of the approximation.

In [6], for example, a steganographic method in the JPEG
domain is presented, where θ stems from the never-compressed
image. This enables embedding in coefficients that are close to
the boundary of quantization intervals. This side information is
neither available to the recipient nor the attacker. The selection
channel, a coding technique, and its generalizations ensure that
the recipient does not need to know the embedding positions
to extract the message [6].

Remark 2. The mere order relation in Definition 5 ignores
quantitative differences in the likelihoods of Definition 4.

Remark 3. The assumption of a complete order is a simplifi-
cation. Some practical schemes establish partial orders and
resolve them with random (key-dependent) tie-breaking rules.

The framework is sufficiently expressive to study canonical
strategies. Replacing the order with a quantitative detectability
profile [14] or more realistic non-linear distortion functions is
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SCHÖTTLE AND BÖHME: GAME THEORY AND ADAPTIVE STEGANOGRAPHY 3

formally straightforward, but depends on detailed knowledge
of the specific cover source. The simplifications here allow us
to use a handy convention: we write y(0) for a cover x(0) with
symbols ordered by decreasing suitability for embedding, i. e.,
ζi−1(y(0),θ) ≥ ζi(y(0),θ) for 1 ≤ i < n− 1. Of course, the
stego object is transmitted with its symbols in original order.

However, stego objects x(1) often leak information about
the values of ζ to the steganalyst, who can thus infer likely
embedding positions and (partially) recover the order of
y(0). We use the hat notation to express the steganalyst’s
estimation ζ̂ of the values of ζ . Similarly, let ŷ(1) be the stego
object with the recovered order of symbols. We say that an
adaptivity criterion is perfectly recoverable if ŷ(1) = y(1).
The framework is agnostic about quantifying this information
leakage. Deviations from perfect recovery are best studied in
the context of specific models (see Section V for an example).

C. The Adaptive Steganography Game

Let Alice be the steganographer and Eve be the steganalyst.
Eve knows the embedding function including its adaptivity
criterion. Alice does not know the global cover distribution
P0. Granting Eve access to both global distributions P0 and
P1 (as suggested by the strictest interpretation of Kerckhoffs’
principle for steganography [15]) would enable her to attack
with the best-possible detector (although it may be computa-
tionally hard). This setup appears unrealistic and is sufficiently
studied [16]. Instead, we follow Böhme and Ker who argue that
a realistic setup is characterized by incomplete information and
computational bounds for all parties [1], [17], [18]. This means
that both parties, unaware of the global distributions, must
resort to local models based on public knowledge. Deprived of
perfect embedding and optimal detection, Alice’s best choice
of embedding positions may depend on Eve’s actions, and vice
versa. Game theory helps us to analyze the resulting strategies.

The different entities in our game are: Nature, Alice, the
Judge, and Eve. Nature is the heterogeneous cover source
that emits a cover x(0) of n symbols drawn from P0. Upon
receiving the cover from Nature, Alice changes exactly k ≤ n
values. She changes position i of the reordered cover y(0) with
probability āi. (Recall that we abstract from a coding layer.
See [14] for a discussion of coding to maximize embedding
efficiency for content-adaptive steganography.) The Judge is
fair and forwards to Eve with constant probability µ = 1/2
either the cover or the stego object. In the jargon of game
theory, Alice and Eve are the strategic players and Nature and
the Judge are not strategic. They cause imperfect information
in the sense that Alice has little influence on the cover source
and Eve does not know what type of object she faces.

When Eve gets either the cover or the stego object, she
recovers its order and inspects symbol ŷ(āi)

i with probability ēi.
Then, she decides about the type of object. Her disadvantage
materializes in the error rates of this decision. These rates
quantify steganographic security.

D. Strategies

Game theory distinguishes pure and mixed strategies. A
strategy is pure if a player chooses an action deterministically.

By contrast, a mixed strategy is a probability distribution
over pure strategies. Alice’s strategy space to change k values
out of n positions leads to

(
n
k

)
pure strategies. We simplify

this by assigning probabilities in mixed strategies to single
positions and only look at the projection of the probabilities
onto the positions. We define the random binary vector A,
of which Alice’s choice a = (a0, . . . , an−1) is a realization,
and the random binary vector E, of which Eve’s choice
e = (e0, . . . , en−1) is a realization. A value of ai = 1 means
that Alice changes y(0)

i for embedding, and ai = 0 means she
does not. Similarly, Eve inspects ŷ(āi)

i only if ei = 1.
Let āi = Pr(Ai = 1) and ēi = Pr(Ei = 1) be Alice’s and

Eve’s parameters in mixed strategies, respectively.
The embedding strategy is part of the embedding function,

besides the embedding operation (Def. 2). We characterize three
canonical embedding and three canonical detection strategies.

Definition 6 (Canonical Embedding Strategies).
The steganographer’s embedding strategy is called . . .

(E.i) naı̈ve adaptive, if āi = 1 for i ∈ {0, . . . , k − 1} and
āi = 0 otherwise,

(E.ii) random uniform, if ∀i : āi = k/n, and
(E.iii) optimal adaptive, if ā = ā∗, a (unique) equilibrium

strategy of the adaptive steganography game.

Definition 7 (Canonical Detection Strategies).
The steganalyst’s detection strategy is called . . .

(D.i) unweighted, if ∀i : ēi = k/n,
(D.ii) weighted, if ēi = 0 for i ∈ {0, . . . , n − k − 1} and

ēi = 1 otherwise, and
(D.iii) optimal adaptive, if ē = ē∗, a (unique) equilibrium

strategy of the adaptive steganography game.

Most practical embedding functions implement random
uniform or naı̈ve adaptive embedding. Most steganalysis
methods implement unweighted or weighted detection. Observe
that weighted detection is blind to naı̈ve adaptive embedding if
k < n

2 , as it puts all weight on the least suitable (i. e., easiest
to analyze) positions which are not touched by naı̈ve adaptive
embedding. A contribution of this article is to investigate the
optimal adaptive strategies.

E. Example

To connect the concepts of our framework with simple prac-
tical steganography, consider the example of least significant
bit (LSB) embedding in the spatial domain (i. e., pixel values)
of grayscale images. Suppose the cover source X(0) is a
digital camera and let the image in Figure 1 (a) be a cover x(0)

(Def. 1) drawn from the unknown cover distribution P0. (The
pixel matrix is serialized to a vector.) The embedding operation
(Def. 2) replaces the LSBs of embedding positions with the
encrypted and encoded hidden message bits. A well-known
detector of LSB replacement steganography predicts potential
cover pixel values from the observed image and aggregates the
resulting residuals for further analysis [12]. Obviously, pixels
at sharp edges are less predictable and thus more suitable for
embedding (Def. 4) than pixels in smoother regions. The local
variance approximates differences in suitability and serves as
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(a) cover (b) adaptivity criterion (c) random uniform (d) naı̈ve adaptive (e) optimal adaptive

Fig. 1. Concepts of our framework by the example of spatial domain image steganography. Red color indicates positions where embedding flips the LSB.

a popular adaptivity criterion ζ (Def. 5). Brighter regions in
Figure 1 (b) denote higher variance and less risk of detection.

Figure 1 (c) shows the embedding positions of a random
uniform strategy (Def. 6-E.ii). By contrast, the naı̈ve adaptive
strategy (Def. 6-E.i) prioritizes positions with high local vari-
ance and avoids risky spots, shown in Figure 1 (d). According
to empirical measurements [19], the steganalyst can recover
more than 98 % of the embedding positions by recomputing the
local variance on the stego image. With this knowledge she may
concentrate her efforts on likely embedding positions. Using
the optimal adaptive strategy (Def. 6-E.iii) promises better
security against an anticipating steganalyst who can recover
the values of the adaptivity criterion. Observe in Figure 1 (e)
that some moderately suitable positions are used. This prevents
the steganalyst from ignoring these parts of the image and
increases steganographic security. The optimal adaptive strategy
is an equilibrium of the adaptive steganography game.

III. SPECIFIC MODEL

The simplest model to study adaptive embedding consists of a
source of heterogeneous covers of exactly two symbols (n = 2),
x(0) =

(
x

(0)
0 , x

(0)
1

)
, in which Alice makes one embedding

change (k = 1). To reduce the number of case distinctions, it
is convenient to model covers ordered by decreasing suitability
y(0) =

(
y

(0)
0 , y

(0)
1

)
. By symmetry, this is without loss of

generality if we assume perfect recovery. Imperfect recovery
can be modeled by flipping the two symbols with probability
1− r, where r ∈ [0, 1] is the recovery rate.

A. Two-Symbol Model
The instantiation of n = 2 and k = 1 simplifies Alice’s

strategy space ā to ā0 := ā and ā1 = 1− ā. She embeds with
probability ā into y(0)

0 and with probability 1− ā into y(0)
1 . A

similar simplification works for Eve’s strategy space ē. With
perfect recoverability, a value of ē = 1 means she inspects
y

(ā)
0 , the more suitable symbol, and ē = 0 means she examines
y

(1−ā)
1 . More generally, we model Eve’s choice such that she

can either inspect ŷ(ā)
0 or ŷ(1−ā)

1 , but not both at the same time.
We justify this by the observation that Eve has no knowledge
of the global distribution and thus has to use imperfect local
rules, thereby discarding some evidence.

The simplifications allow us to draw this instantiation of
the adaptive steganography game, as defined in Sect. II-C, in
Figure 2. The tree specifies the probabilities for both players’
pure strategies in mixed strategies and also incorporates the
non-strategic parts: cover source, the Judge’s coin flip, and
Eve’s decision rule.

B. Cover Source
Most digital representations of natural cover sources use

positive integers as alphabet X := {0, . . . , 2` − 1}. Constant `
defines the size of the cover alphabet. To reflect that symbols
occur with varying probability, let f (0)

ti : X→ [0, 1] be a family
of probability mass functions (PMFs),

f
(0)
ti (u) := Pr(y

(0)
i = u) :=

(ti)
u

di
, (1)

with parameter ti ≥ 1 and normalizing factor di := 1−ti2
`

1−ti .
Observe that the probabilities of the values 0, . . . , 2` − 1 ∈ X
are increasing by a constant ratio.1 In the limit case, ti = 1
creates a uniform distribution (i. e., maximum entropy). The
entropy decreases with increasing ti.

Now extending to n = 2 independent cover symbols, we
restrict the parameter ranges of t0 and t1 to 1 ≤ t0 ≤ t1.
This will allow us to generate homogenous (for t0 = t1) and
heterogenous (for t0 < t1) covers with ordered suitability.
(Corollary 1 in Sect. III-E will prove the very last assertion.)

C. Justification of the Cover Source Model
Although our cover source is very simple and in fact

artificial [3], several reasons justify its specific choice.
First, note that the PMF for individual symbols asymptot-

ically converges to (the left half of) a discretized Laplace
distribution, which is known to model the marginal distribution
of real transform-coded covers reasonably well [20]. The PMF
of a mean-free discretized Laplacian distribution with scale
parameter p is given by [21]:

gp(u) =
p− 1

p+ 1
· p|u|, p ∈ (0, 1), u ∈ Z. (2)

We resolve the absolute value function by considering only the
left half of the distribution, u ≤ 0:

gp(u) =
p− 1

p+ 1
· p−u. (3)

As p < 1, we substitute ti := 1
p in Equation (1) to obtain

f 1
p
(u) =

(
1
p

)u
di

=
1

di
· p−u. (4)

For ti = 1
p fixed, O(gp) and O(f 1

p
) give the asymptotic

equivalence in tails as u (and `) go to infinity:

gp(u) ∈ O(p−u),

f 1
p
(u) ∈ O(p−u). (5)

1This replaces the linear PMF with ` = 2 fixed in our earlier work [9].
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P0

(
y
(0)
0 , y

(0)
1

)

(
y
(1)
0 , y

(0)
1

)

(
ŷ
(0)
0 , ŷ

(0)
1

)

ŷ
(0)
0

C

1− α0

S

α0

ē

ŷ
(0)
1

C

1− α1

S

α1

1− ē

1
2

(
ŷ
(1)
0 , ŷ

(0)
1

)

ŷ
(1)
0

C

β0

S

1− β0

ē

ŷ
(0)
1

C

β1

S

1− β1

1− ē

1
2

ā

(
y
(0)
0 , y

(1)
1

)

(
ŷ
(0)
0 , ŷ

(0)
1

)

ŷ
(0)
0

C

1− α0

S

α0

ē

ŷ
(0)
1

C

1− α1

S

α1

1− ē

1
2

(
ŷ
(0)
0 , ŷ

(1)
1

)

ŷ
(0)
0

C

β0

S

1− β0

ē

ŷ
(1)
1

C

β1

S

1− β1

1− ē

1
2

1− ā

Cover source
Nature

Alice’s
strategy

Judge

Eve’s
strategy

Eve’s
decision
rule

incorrect

Eve’s anticipation is . . .

correct (for y(0)
0 )

correct (for y(0)
1 )

Fig. 2. The adaptive steganography game in the two-symbol model. α (β) is the false positive (negative) rate of Eve’s decision rule (C for cover; S for stego).

Second, the restriction to n = 2 symbols permits an
interpretation of larger heterogenous covers with independent
symbols if they can be partitioned into two parts of equal size
and suitability. The game is then played simultaneously and
independently for each pair of heterogeneous symbols.

Third, the assumption that the ordered symbols y(0) are
independent is a common (and possibly realistic) simplification
because reordering the cover by the adaptivity criterion likely
removes Markov-properties. Of course, this does not prevent
Eve from exploiting Markov-properties stemming from the
cover in the unordered stego object x(1). To resolve this, one
may assume that she exhausts this information source when
recovering the adaptivity criterion (e. g., local variance).

Fourth, independent cover symbols imply that the entropy of
the cover source is the sum of the entropy of its symbols. The
entropy of the cover source is an important benchmark quantity.
It gives the upper bound for the size of a hidden message
which a computationally unconstrained steganographer can
embed undetectably. We can easily vary the heterogeneity of
the cover source by adjusting ti while (numerically) enforcing
constant entropy. By doing so, entropy and heterogeneity are
not confounded and we can isolate the effect of heterogeneity.

Fifth, we will show that our PMF renders the game-theoretic
results independent of the size of the cover alphabet `.

D. Embedding Operation and Alice’s Strategy
We fix the embedding operation to the popular choice of

least significant bit replacement (LSBR),

emb(y) := y + (−1)y ⇒ emb−1(y) = emb(y). (6)

Let f (1)
ti be the family of PMFs resulting from always

embedding in y(0)
i . Then, for individual values u it holds:

f
(0)
ti (u) = Pr(u | Cover) and f (1)

ti (u) = Pr(u | Stego). (7)

In the cover model, we can find an analytical expression for
P1 by examining the distribution after embedding in y(0)

0 with
probability ā and embedding in y(0)

1 with probability 1− ā.
As our model is to always change one symbol, it holds that

f
(1)
ti (u) = f

(0)
ti (emb−1(u)). (8)

This yields the following lemma about f (1)
ti (u), the marginal

distributions of P1.

Lemma 1. The PMF of stego symbols f (1)
ti (u) is

f
(1)
ti (u) = f

(0)
ti (u) · t(−1)u

i . (9)

Proof: After inserting Eq. (6) into Eq. (8),

f
(1)
ti (u) = f

(0)
ti (emb−1(u)) = f

(0)
ti (u+ (−1)u), (10)

we use the definition of Eq. (1) and rearrange,

=
ti
u+(−1)u

di
= f

(0)
ti (u) · t(−1)u

i . (11)

If Alice plays a mixed strategy with parameter ā, the joint
distribution P1 after embedding is a mixture of the kind:

P1(y) = Pr(y0 = u, y1 = v)

= ā
(
f

(1)
t0 (u) · f (0)

t1 (v)
)

+ (1− ā)
(
f

(0)
t0 (u) · f (1)

t1 (v)
)
.

(12)

Remark 4. With our cover model and embedding operation,
perfect steganography is only possible if t0 = 1.

Whenever t0 > 1, some simple algebra shows that P0 and
P1 differ. Note that this is necessary but not sufficient to rule
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Fig. 3. Example histograms of the cover source for n = ` = 2. Compare
the more suitable (brighter bars) to the less suitable (darker bars) position for
a: (a) homogeneous (t0 = t1 = 1.3); (b) heterogeneous (t0 = 1.1, t1 = 2)
cover source. The arrows indicate which values are exchanged by the LSBR
embedding operation.

out the possibility of perfect steganography. Even if P0 and
P1 are not the same, the marginal distributions for one symbol
(the more suitable one) may be equal.

E. Heterogeneity

Heterogeneity is necessary for adaptive steganography. We
discuss how our model can be parametrized for different levels
of heterogeneity.

Recall that the definition of heterogeneity (Def. 3) uses the
KLD. There is an easy way to calculate it for our model.

Lemma 2. The Kullback–Leibler divergence between P0 and
P(yi) can be calculated as follows:

KLD(P0,P(yi)) = log ti ·
ti − 1

ti + 1
. (13)

The proof is given in Appendix A.
As the symbols are independent, the amount of distortion

introduced by embedding, as measured by the KLD, only
depends on the PMF of the symbol used for embedding.

Corollary 1. If it holds that t0 < t1, then y(0)
0 is more suitable

for embedding than y(0)
1 .

Proof: If t0 < t1, then log t0 · t0−1
t0+1 < log t1 · t1−1

t1+1 , hence
by Lemma 2: KLD(P0,P(y0)) < KLD(P0,P(y1)).

Remark 5. The difference in the KLD between (1) changing
only the least suitable and (2) changing only the best suitable
symbol is a metric to quantify the heterogeneity of a cover
source: ∆ KLD := KLD(P0,P(y1))−KLD(P0,P(y0)).

Note that this metric depends on the embedding operation,
like our notions of heterogeneity and suitability.

The histograms in Figure 3 show examples of two different
parameterizations of the cover source with a fixed alphabet of
four values (` = 2). The smaller parameter ti, the closer is the
distribution to a uniform distribution and the less detectable is
the embedding operation LSBR (as indicated by the arrows).
Figure 3(a) shows a homogeneous cover source. Only for
heterogeneous cover sources (Figure 3(b)), Alice can take
advantage of adaptively choosing more suitable positions. This
advantage increases with the level of heterogeneity.

F. Eve’s Decision: Local Optimal Detector

We equip Eve with the locally optimal decision rule, specific
to the embedding operation LSBR and the cover source. The
rule is not part of Eve’s strategy, she follows it deterministically.
The rule influences the game-theoretic analysis indirectly by
the error rates it induces.

Eve’s decision rule decide(u) between C (for cover) and
S (for stego) follows from the maximum a posteriori (MAP)
estimation [12, for example], and the fairness of the Judge
(µ = 1/2).

Lemma 3. Eve’s locally optimal decision rule when examining
an individual symbol and finding value u is:

decide(u) :=

{
S : u ≡ 0 (mod 2)

C : u ≡ 1 (mod 2).
(14)

Proof: MAP estimation minimizes the decision errors by
using Bayes’ theorem:

q̂ = arg max
q

Pr(q | u) = arg max
q

Pr(u | q) · Pr(q). (15)

With q ∈ {C,S}, we obtain

q̂ = arg max
q

Pr(u | q) · µ (16)

Eq. (7)
= arg max

{
C : f

(0)
ti (u),S : f

(1)
ti (u)

}
, (17)

now using Lemma 1 and dividing element-wise by f (0)
ti (u),

= arg max
{

C : 1,S : t
(−1)u

i

}
, (18)

=

{
S : u ≡ 0 (mod 2)

C : u ≡ 1 (mod 2).
(19)

The last equality follows from the fact that ti ≥ 1. If ti = 1,
Eve is indifferent, but the rule is still optimal in the sense that
she cannot do better than random guessing.

Note that fixing the embedding operation (in Sect. III-D)
and this detector generally precludes Alice from embedding
at the information-theoretic bound (unless ti = 1), and Eve
from using the best-possible detector. This is intentional to
reflect the hardness of reaching these goals in practice. These
restrictions can be understood as a way to model the players’
knowledge and computational constraints while allowing us to
still analyze their respective strategies. At the same time, the
fact that we use an artificial cover model with tractable globally
optimal solutions enables us to benchmark the constrained
solutions against the information-theoretic optimum, which
would minimize the KLD. This comparison would not be
tractable for much richer cover models let alone real covers.

G. Error Rates

As mentioned in Section II-C, Eve’s error rates quantify
steganographic security. In our model, the error rates depend
on the parameters ti. Let αi (βi) be Eve’s false positive (false
negative) probability when applying decide on f (0)

ti (f (1)
ti ). We
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use Eve’s average error rate (under equal priors) AER :=
(αi +βi)/2 to measure steganographic security in this analysis.

Lemma 4. If Eve investigates the same position i ∈ {0, 1}
that Alice has changed for embedding, then

AER =
1

ti + 1
. (20)

The proof is given in Appendix B.
Equation (20) is intuitive, as the error probability is 1/2

(random guessing) for the boundary case ti = 1; uniform
i. i. d. where LSBR is undetectable. It is also consistent with
Corollary 1 because higher values of ti imply less suitability
for embedding, which leads to a lower AER, and vice versa.

Corollary 2. The worst case for Eve is Alice choosing a ∈
{0, 1} and she herself choosing e = 1 − a. In this case, her
decision is no better than random guessing, i. e., AER = 1/2.

Proof: Recall that a = a0, 1 − a = a1, e = e0, and
1− e = e1. If e = 1− a, Eve’s decision rule is always applied
to symbols drawn from the (marginal) cover distribution. For
every symbol u ∈ X, let bias bu ∈ [0, 1] be the probability
that any probabilistic decision rule (including decide from
Lemma 3) returns S (for stego) upon finding value u. Then,

AER |u =
α|u + β|u

2
=
bu + (1− bu)

2
=

1

2
. (21)

AER |u is independent of u, hence AER = 1/2.

H. Type of Game

We recall the properties of our game to facilitate its classifica-
tion in the game-theortical literature. Our setup starts as a game
with incomplete information: the players are uncertain about
the cover realization. By introducing Nature and the Judge,
we use the Harsanyi transformation [22] to rewrite the game
as a game with imperfect information, i. e., a Bayesian game.
Finally, aggregating the probability distributions of Nature and
the Judge to a (frequentist) rate, the AER, transforms the setup
to a simultaneous move game with perfect information.

IV. SOLVING THE GAME

We first derive the pay-off function and then solve the game
for Nash equilibria [23]. Throughout this section we assume
that Eve can perfectly recover the order of the suitability of
the embedding positions; formally: ŷ(1) = y(1).

A. Pay-Off

Being agnostic about detailed cost assumptions, we devise a
zero-sum game with the AER determining the pay-offs. Zero-
sum games are strictly competitive, one player loses what the
other wins. Alice wants to perform least detectable steganog-
raphy, hence she tries to maximize the AER. Eve’s goal is to
detect as much as possible, hence she tries to minimize the
AER. Consequently, Alice’s pay-off is her expected AER, and
Eve’s pay-off is her expected −AER. Expectations are taken
over realizations of the random variables governed by Nature
and the realizations of the players’ strategies A and E.

Table I lists all possible states (in rows), the associated AER
for two different scenarios (column blocks), and how we obtain
it. Note that each row aggregates both possible outcomes of
the Judge’s coin flip and the AER combines both error rates.

Lemma 5. The expected AER in mixed strategies is

χ(ā, ē) :=
1

t1 + 1
+
( t1 − 1

2(t1 + 1)

)
ā+

( t1 − 1

2(t1 + 1)

)
ē

+
( 1− t0t1

(t0 + 1)(t1 + 1)

)
āē (22)

Proof: Figure 2 shows that the nodes of Eve’s decision
can be classified into three different types (by their shape).
(1) Alice changes y(0)

0 and Eve anticipates it (pentagons).
(2) Alice changes y(0)

1 and Eve anticipates it (hexagons).
(3) Alice changes y(0)

i , but Eve inspects the wrong embedding
position (squares in Figure 2).

Table I shows the respective probabilities of occurrence, pay-
offs, and justifications in columns 1–5. In combination, this
leads to the following expression for χ(ā, ē):

χ(ā, ē) = āē
1

t0 + 1
+

1

2
(ā(1− ē) + (1− ā)ē)

+ (1− ā)(1− ē) 1

t1 + 1
. (23)

Equation (22) follows from rearranging Equation (23).

Remark 6. In the pathological case of t0 = t1 = 1, i. e., a
homogeneous cover source with perfect steganography possible
in both symbols, it holds that χ(ā, ē) = 1/2. Particularly, χ(ā, ē)
is independent of ā and ē. Such situations do not require game
theory and are out the scope of this article.

B. Equilibrium Strategies

Nash equilibria in two-player games are tuples of mixed
strategies (ā∗, ē∗) such that no player can (strictly) increase
her pay-off by unilaterally deviating from her equilibrium
strategy [23]. To find a Nash equilibrium we look for a strategy
that makes the opponent indifferent, i. e., a strategy where she
cannot influence the pay-off by changing her strategy. We
find such strategies by taking partial derivatives of the pay-
off function, χ(ā, ē) with regard to the opponent’s strategy
and setting them to zero. Then we show that theses strategies
indeed constitute a unique equilibrium, which happens to be
symmetric.

Theorem 1. There exists a unique symmetric Nash equilibrium
in mixed strategies. In this equilibrium it holds that:

ā∗ = ē∗ =
(1− t1)(1 + t0)

2(1− t0t1)
. (24)

Proof: The partial derivatives of the pay-off functions are:

∂χ(ā, ē)

∂ā
=

t1 − 1

2(t1 + 1)
+
( 1− t0t1

(t0 + 1)(t1 + 1)

)
ē, (25)

∂ − χ(ā, ē)

∂ē
=− t1 − 1

2(t1 + 1)
−
( 1− t0t1

(t0 + 1)(t1 + 1)

)
ā. (26)
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TABLE I
GAME OUTCOME IN DIFFERENT STATES OF THE WORLD

Perfect/Correct recovery Incorrect recovery

Alice’s choice Eve’s choice Probability AER Reason Reality AER Reason

y
(0)
0 ŷ

(1)
0 ā · ē 1

t0+1
Lemma 4, i = 0 y

(0)
1

1
2

Corollary 2

y
(0)
0 ŷ

(0)
1 ā · (1 − ē) 1

2
Corollary 2 y

(1)
0

1
t0+1

Lemma 4, i = 0

y
(0)
1 ŷ

(0)
0 (1 − ā) · ē 1

2
Corollary 2 y

(1)
1

1
t1+1

Lemma 4, i = 1

y
(0)
1 ŷ

(1)
1 (1 − ā) · (1 − ē) 1

t1+1
Lemma 4, i = 1 y

(0)
0

1
2

Corollary 2

Setting both derivatives to zero yields Equation (24).
To see that ā∗ is an equilibrium strategy, we combine

Equations (22) and (24):

χ(ā∗, ē) =
1

t1 + 1
+
( t1 − 1

2(t1 + 1)

)
·
( (1− t1)(t0 + 1)

2(1− t0t1)

)
+
( t1 − 1

2(t1 + 1)

)
ē

+
( 1− t0t1

(t0 + 1)(t1 + 1)

)
·
( (1− t1)(t0 + 1)

2(1− t0t1)

)
ē. (27)

Considering only the terms containing ē:

ē ·
( t1 − 1

2(t1 + 1)
+

1− t1
2(t1 + 1)

)
= ē · 0. (28)

As the same holds for χ(ā, ē∗), both χ(ā∗, ē) and χ(ā, ē∗)
are independent of the opponent’s strategy. Thus, ∀ā, ē ∈
[0, 1] : χ(ā∗, ē∗) = χ(ā∗, ē) = χ(ā, ē∗), and thus (ā∗, ē∗) is
a Nash equilibrium.

A quick check that no combination of pure strategies is a
Nash equilibrium (for t0 > 1) establishes the uniqueness of
(ā∗, ē∗). The symmetry is obvious as ā∗ = ē∗.

The following corollaries state two direct implications for
the design of more secure embedding functions.

Corollary 3. If and only if the given cover source is homoge-
neous, i. e., t0 = t1, Alice’s best strategy is random uniform
embedding (strategy (E.ii) from Section II-D).

Proof: The ‘if’ direction follows from the fact that for
t0 = t1, it holds that:

ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
=

(1− t0)(1 + t0)

2 · (1− t02)
=

1

2
. (29)

Alice changes each of the two symbols with probability ā = 1/2.
With k = 1 and n = 2, this fulfills the definition of random
uniform embedding.

If t0 < t1, it holds that:

ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
=

1

2
·


<0︷ ︸︸ ︷

t0 − t1 +(1− t0t1)

1− t0t1


︸ ︷︷ ︸

>1

>
1

2
.

(30)
This proves the ‘only-if’ direction.

Corollary 4. If and only if one of the cover symbols allows
for perfect steganography, then Alice’s best strategy is naı̈ve
adaptive embedding (strategy (E.i) from Section II-D).

Proof: Perfect steganography is only possible if the PMF
of at least k symbols (k = 1 in our model) is invariant to
embedding. Inserting the formal condition, t0 = 1 (from
Remark 4), into the equilibrium condition:

ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
=

(1− t1) · 2
2 · (1− t1)

= 1. (31)

Alice always changes the better suitable symbol. This fulfills
the definition of naı̈ve adaptive embedding. Whenever t0 > 1
it follows, that

t0(t1 + 1) > t1 + 1 ⇔ t0t1 − 1 > t1 − t0. (32)

Rewriting Equation (24) yields:

ā∗ =
1

2
+

1

2
·
(
t1 − t0
t0t1 − 1

)
︸ ︷︷ ︸

<1

< 1. (33)

This proves the ‘only-if’ direction.
From the uniqueness of the equilibrium and the preceding

corollaries follows another property of our model.

Corollary 5. If t0 > 1, there are no dominated strategies and
thus no dominant strategy equilibria (DSE) in our model.

Proof: From Corollary 4 it follows that, unless t0 = 1,
the equilibrium given in Theorem 1 defines strategies that put
positive probability on every pure strategy. Such an equilibrium
is called completely mixed equilibrium and only exists if there
is no pure or mixed strategy of any player that is strictly
or weakly dominated by a convex combination of her other
strategies [24]. Therefore, there are no dominant strategies and
thus no dominant strategy equilibria.

It is easy to see that in the corner case t0 = 1, the pure
strategies ā∗ = ē∗ = 1 are dominant pure strategies and form
a dominant strategy equilibrium.

C. Pay-off in Equilibrium

Now that we determined the equilibrium strategies for Alice,
respectively Eve, we can calculate the pay-off in equilibrium.

Corollary 6. The expected AER in equilibrium is

χ(ā∗, ē∗) =
(t0 + 1)(t1 + 1)− 4

4(t0t1 − 1)
. (34)
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This corollary follows directly from inserting the equilibrium
conditions (Theorem 1) into Lemma 5.

A closer look at the equilibrium strategies reveals that they
are equalizer strategies [24]. Equalizer strategies yield the
same expected payoff for each player, regardless of the (pure
or mixed) strategy chosen by the other player.

Corollary 7. The equilibrium strategies ā∗, respectively ē∗

are equalizer strategies.

Proof: From the proof of Theorem 1 we know that
χ(ā∗, ē∗) = χ(ā∗, ē) = χ(ā, ē∗). Thus, if Alice plays her
equilibrium strategy ā∗, Eve’s strategy ē does not influence
the pay-off and vice versa. From this property it follows that
ā∗ and ē∗ are equalizer strategies.

Corollary 8. If Alice (Eve) plays her equilibrium strategy, she
balances Eve’s (Alice’s) advantage over choosing a specific
position.

Proof: The corollary follows directly from the fact that
equalizer strategies make the other player indifferent to the
strategies of the opponent [24].

This means that the heterogeneity in the cover source is
exactly offset by the probabilities of the mixed strategies.
Equilibria in high-dimensional spaces may be hard to find [25].
Starting with the solution concept of equalizer strategies might
render this problem tractable as it reduces the search space.

Summarizing this section, we have proven that for this
instantiation of the framework

• our adaptive steganography game has a unique symmetric
Nash equilibrium in equalizer strategies (Thm. 1; Cor. 7);

• random uniform embedding is only optimal for homoge-
neous covers (Cor. 3); and

• naı̈ve adaptive embedding is only optimal when perfect
steganography is possible (Cor. 4).

The optimal strategies depend on the level of heterogeneity of
the cover source, albeit in a non-linear manner.

V. IMPERFECT RECOVERY

In this section we relax the arguably unrealistic assumption
that Eve is able to perfectly recover the order of possible
embedding positions. However, both players know the (average)
recovery rate r, which is akin a global constant. In our model
with two positions, we define r as follows:

Definition 8 (Recovery rate). The recovery rate r is the
probability that Eve can correctly recover the order of the
symbols, i. e., ŷ(1) = y(1).

In practice, the recovery rate is an empirical property (hence
“rate”) of the adaptivity criterion and the embedding function.
As the criterion is not explicit in the stylized model, we can
use the shortcut of Definition 8.

With the introduction of imperfect recoverability, we need
to adjust the pay-off function.

Lemma 6. The pay-off function with recovery rate r is:

χr(ā, ē) :=
1

2
+ (

1− t0
2(t0 + 1)

)ā+ (
1− t1

2(t1 + 1)
)ē

+ (
t0t1 − 1

(t0 + 1)(t1 + 1)
)āē+ r ·

[
− 1

2
+

1

t1 + 1
+ (

t1 − 1

t1 + 1
)ē

+ (
t0t1 − 1

(t0 + 1)(t1 + 1)
)ā+ 2(

1− t0t1
(t0 + 1)(t1 + 1)

)āē

]
. (35)

Proof: Imperfect recovery is modeled by a mixture of
correct and incorrect recovery. The pay-off function from
Lemma 5 holds with probability r for the case of correct
recovery. With probability (1 − r), the pay-off function is
given by the terms in columns 6–8 of Table I for the case of
incorrect recovery. Overall:

χr(ā, ē) = r · χ(ā, ē) + (1− r) ·

(
1

2
+
( 1− t0

2(t0 + 1)

)
ā

+
( 1− t1

2(t1 + 1)

)
ē+

( t0t1 − 1

(t0 + 1)(t1 + 1)

)
āē

)
. (36)

Inserting Eq. (22) into Eq. (36) and rearranging yields Eq. (35).

It is sufficient to study the interval 1/2 ≤ r ≤ 1 because
with n = 2, Eve can always invert the output of her recovery
function to improve her rate to r = 1− r′, where r′ < 1/2 is
her original rate. Next, we update the equilibrium conditions.

Theorem 2. There exists a unique (asymmetric) Nash equi-
librium in mixed strategies for r 6= 1/2. In this equilibrium it
holds that:

ā∗r =
(1− t1)(1 + t0)

2(1− t0t1)
, (37)

ē∗r =
1

2
− t0 − t1

2(2r − 1)(t0t1 − 1)
. (38)

Proof: The partial derivatives of the pay-off function are:

∂χr(ā, ē)

∂ā
=
(

(2r − 1)
t0t1 − 1

2(t0 + 1)(t1 + 1)
+

t1 − t0
2(t0 + 1)(t1 + 1)

)
+
(

(2r − 1)
1− t0t1

(t0 + 1)(t1 + 1)

)
ē, (39)

∂ − χr(ā, ē)

∂ē
=−

(
(2r − 1)

t1 − 1

2(t1 + 1)

)
−
(

(2r − 1)
1− t0t1

(t0 + 1)(t1 + 1)

)
ā. (40)

Setting both derivatives to zero yields the strategies.
Inserting ā∗r in the partial derivative of the second term of

Eq. (36) (factor (1− r)), which describes the case where Eve
is not able to recover the order of the positions, eliminates
all factors containing ē in this term. The same was already
shown for the first term of Eq. (36) (factor r) in the proof of
Theorem 1. Some algebra shows that χr(ā, ē∗r) is independent
of ā as well and thus, with the same arguments as in the proof
of Theorem 1, (ā∗r , ē

∗
r) is a Nash equilibrium. The uniqueness
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follows from the fact that no combination of pure strategies is
a Nash equilibrium (for t0 > 1; r 6= 1/2).

Note that this equilibrium is no longer symmetric: Alice
follows the same strategy as with perfect recoverability, whereas
Eve uses a different one.

Equation (38) implicates that Eve’s strategy is not well-
defined for r = 1/2. We handle this special case separately.

Corollary 9. The pay-off function χ 1
2

is linear in ā and
independent of ē. (Eve cannot influence the pay-off.) Alice’s
best strategy is ā = 1 (naı̈ve adaptive embedding).

Proof: Inserting r = 1/2 into Equation (35), yields:

χ 1
2
(ā, ē) =

t1 + 3

4(t1 + 1)
+
( t1 − t0

2(t0 + 1)(t1 + 1)

)
ā, (41)

which is linear in ā and independent of ē. The slope is positive
whenever t0 < t1. Therefore ā = 1 is the maximum.

The insight here is limited: the special case reminds us that
if the stego object does not leak any information about the
values of the adaptivity criterion, Eve has no advantage if she
tries to recover it.

For r 6= 1/2, we find that the equilibrium strategies are still
equalizer strategies, and the game outcome is the same as in
the case of perfect recovery.

Corollary 10. With recovery rate r, the equilibrium strategies
are equalizer strategies and the pay-off in equilibrium is:

χr(ā∗r , ē
∗
r) =

(t0 + 1)(t1 + 1)− 4

4(t0t1 − 1)
. (42)

Proof: From the proof of Theorem 2 follows that the
players cannot influence the pay-off when the other player
uses her equilibrium strategy. Thus, ā∗r and ē∗r are equalizer
strategies. The pay-off follows from combining Equations (35),
(37) and (38).

It is very interesting to find that, excluding the corner case
r = 1

2 , the equilibrium pay-off of the game is independent of
the recovery rate r. If Alice plays her equilibrium strategy, she
does not need to worry about the risk of Eve being able to
recover the likely embedding positions via the adaptivity crite-
rion. If a comparable result generalizes to practical scenarios
(with gentle assumptions), it could become a cornerstone for
the design of secure adaptive steganography.

VI. NUMERICAL ILLUSTRATION

In this section we numerically illustrate and interpret selected
results of Sections III and IV. We plot the variables of interest
in the parameter space t0, t1 ∈ [1, 4] and t0 ≤ t1.

Figure 4(a) shows the symmetric optimal adaptive strategy of
Alice (ā∗) and Eve (ē∗) as a function of the model parameters
t0 and t1. Higher values of the strategy variable indicate that
the more suitable of both embedding positions is changed,
respectively inspected, more often. Values at the diagonal t0 =
t1 illustrate Corollary 3. If the cover source is homogeneous,
random uniform embedding is optimal. The boundary line
t0 = 1 illustrates Corollary 4. If the more suitable position
allows for perfect steganography, it is used with certainty. This
is the case where naı̈ve adaptive embedding is optimal.

Regions of perfect steganography can also be identified in
Figure 4(b) (mind the rotated base). They are characterized by
an error rate at its theoretical maximum of 1/2: Eve cannot do
better than random guessing.

The remaining parameter space is hard to interpret in these
graphs because adjusting t0 or t1 affects both the heterogeneity
and the entropy of the cover source. Figures 5(a) and 5(b)
show this interdependence. Entropy is measured in bits and
best interpreted as an upper bound for the secure capacity
(cf. Sect. III-C). We use ∆ KLD, introduced in Section III-E,
as a metric for the level of heterogeneity. Higher values indicate
more heterogeneous cover sources. Zero indicates homogeneity.

To compare like with like, we select two sets of constant
entropy (H ∈ {2.2, 3.6} bit, annotated in the figures) and
adjust (t0, t1) jointly to vary the level of heterogeneity within
these sets. Heterogeneity is the most important prerequisite for
adaptive steganography, therefore Figure 6 compares strategies
and pay-offs as a function of the level of heterogeneity while
keeping everything else constant. In both subfigures, black
lines refer to higher entropy, gray lines to lower entropy.

Figure 6(a) reports the optimal adaptive embedding strategies
(ā∗) in solid lines. In the equilibrium, Alice uses random
uniform embedding (ā∗ = 1/2) only if the cover source is
homogenous and shifts more and more probability mass to the
more suitable position as the level of heterogeneity increases.
This increase is steeper for cover sources with higher entropy.
Since the equilibrium is symmetric (cf. Theorem 1), the solid
lines also display Eve’s optimal adaptive detection strategies.

For comparison, the dashed lines in Fig. 6(a) show Alice’s
choice of ā in the distortion minimization paradigm. More
specifically, we minimize the KLD between the cover and
stego distribution. This is tractable in our stylized model, but
infeasible in almost all practical scenarios. Observe that the
information-theoretic criterion shifts the probability mass to
the more suitable position more aggressively than the game-
theoretic solution, but it does not coincide with naı̈ve adaptive
embedding for the given parameter range. Arguably, game-
theoretically optimal adaptive embedding uses less suitable
positions more often to prevent Eve from ignoring them and
to force her to respond with the game-theoretic strategy.

Figure 6(b) shows Alice’s pay-off in terms of Eve’s average
detection error rate (AER). Higher values indicate more secure
steganography. Observe the level shift between high and low en-
tropy. Consistent with the theoretical bound, high-entropy cover
sources offer more security for a fixed message length. But the
error rate is not constant, unlike the theoretical bound. (Also
the low entropy line increases strictly monotonically, which
is hardly visible at this scale.) The reasons for this difference
is that Eve is constrained to a local detector and therefore
cannot use an information-theoretically optimal detector. This
is a consequence of our intention to model realistic (and thus
bounded) steganalysts. Against this kind of steganalysts, more
heterogeneous cover sources offer more security. But can we
conclude that (optimal) adaptive embedding is worth pursuing?

To answer this question, note that we do not plot separate
error rates for the benchmark where Alice minimizes the
KLD, or for any other canonical strategy. This is because
in our model, Eve’s optimal adaptive detector is an equalizer
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strategy (cf. Corollary 7). This implies by definition that the
pay-off is independent of the opponent’s action. Therefore,
the dashed lines in Figure 6(a) lead to exactly the same error
rates. And so do naı̈ve adaptive or random uniform embedding.
(Both would be horizontal lines in the coordinate system
of Figure 6(a).) In this sense, adaptive embedding does not
improve the steganographic security if the steganalyst already
uses the optimal adaptive detector. But Alice must play her
equilibrium strategy to prevent Eve from doing something
else that could be more harmful to Alice than the equilibrium
payoff.

VII. RELATED WORK

The idea of adaptive embedding is almost as old as research
on digital steganography. (See [1, pp. 48] for a survey and
[26], [27], [28] for more recent examples.) However, the
choice of the adaptivity criterion that directs the selection
of embedding positions has not become an exact science. It
seems that many authors apply judgment or heuristics inspired
by known steganalysis methods. When reporting security gains
over non-adaptive random uniform embedding, they often seem
to disobey Kerckhoffs’ principle by not considering that the
steganalyst knows the adaptivity criterion and can estimate its
values for the cover from the stego object.

This article extends our conference publication [9], which
first motivated to study adaptive steganography with game
theory in order to overcome the shortcomings sketched above.
The conference paper contrasted optimal adaptive strategies
against the information-theoretic benchmark (minimizing KLD)
using a cover model with a simple step-function. This article
introduces a complete framework with a substantially refined
terminology and notation.

Several derived works fit into the proposed framework
without mentioning it. In [29], we use binary covers of length n
and allow the steganalyst to query the most likely value for one
position from an oracle, mimicking cover estimation in practical
steganalysis. In [30], the steganographer changes the values
of exactly k positions in covers of length n. The steganalyst
can aggregate information from all positions. Another variant
of the model implements independent embedding. It lets the
steganographer change k values on average, reflecting that
some values might already carry the right steganographic
semantic in the cover [31]. Denemark and Fridrich [32]
independently extend the model of [9] to Gaussian covers with
LSB matching as embedding operation. They report equilibria
for n = 2 and second the qualitative results of our works.

Recent empirical results show that a steganalyst who
examines only the most likely embedding positions [10] or
weights all positions according to their approximate embedding
probability [11] can detect several state-of-the-art embedding
schemes better than detectors not using this information. It
seems that the loss of detection power due to imprecise
knowledge of the selection channel is rather small, as captured
by our imperfect recovery scenario (Section V). It always
pays off to use imprecise knowledge about likely embedding
positions rather than none [33].

We are aware of three other independent publications using
game theory in the broader context of steganography. Back in

1998, Ettinger [34] proposed a game between a steganographer
who chooses the embedding rate and an active attacker who
chooses the distortion rate subject to constraints on the utility
of the channel. This differs from mainstream steganography
research because the protection goal is availability, not un-
detectability. Ker [35] uses game theory to find strategies in
the special case of batch steganography, where the hidden
message can be spread over many cover objects. The steganalyst
anticipates this and tries to detect the existence of any secret
message (pooled steganalysis). Orsdemir et al. [36] point out a
strategic component in practical steganography and steganalysis.
They devise a meta-game where the steganographer chooses
between two embedding functions and the steganalyst decides
against which of the two functions a single classifier should
be trained. As the embedding functions are black boxes, the
equilibria of this matrix game do not directly inform the design
of secure embedding functions or optimal detectors.

Katzenbeisser and Petitcolas [37] give a challenge-response
protocol, called “game” by the conventions in cryptology, to
formalize the advantage of computationally bounded stegan-
alysts. We build on this protocol to obtain a pay-off metric
under equal priors and augment it by inserting both players’
strategies to make it a game in the sense of game theory [8].

Recent themes at the intersection of machine learning
and security are adversarial classification [38] and signal
processing [39]. Although there is no direct counterpart to our
analysis of adaptive steganography, interesting parallels exist
and the applicability of the results for steganalysis based on
machine-learning and signal detection seems worth exploring.

VIII. CONCLUSION

The main contribution of this work is threefold. First, we
present a universal game-theoretic framework to model adaptive
embedding in the presence of an attacker who anticipates
this behavior and can recover the likely embedding positions
from the stego object. The framework offers a novel way
to analytically study the security of adaptive steganography
while fully respecting Kerckhoffs’ principle. Second, we
instantiate the framework with a stylized two-symbol model
and solve the game for equilibrium conditions. We find
unique symmetric equilibria in equalizer strategies, making
the opponent indifferent to the choice of embedding positions
or detector weights. Third, we relax the initial assumption of
perfect recovery. We find that in our model the embedding
strategy is independent of the recovery rate.

All results depend on a number of assumptions: the players
know the marginal cover distribution, covers consist of two a
priori independent symbols, the steganographer replaces exactly
one bit, the steganalyst inspects only one position. Thus, many
limitations apply when transferring our results to practical
systems. Nevertheless, a solid theory not only helps to guide
the design of future adaptive embedding and detection functions
with qualitative insights, but also to identify promising avenues
to solve the general problem more rigorously. Among the
results of this article, equalizer strategies and the invariance to
the recovery rate seem to have the best chances to influence
future works.
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More generally, we regard this stream of work as a step
towards adding more theoretical rigor to practical steganography
and steganalysis. This might help to narrow the gap between
two diverging strands, strong theorems that apply to non-
existing cover sources on the one hand, and methods that just
work, but little can be said with confidence about their design
decisions and security properties on the other. At the time of
writing, the biggest research challenges towards this end seem
to be the incorporation of non-trivial dependence structures
in the cover model as well as adapting and validating the
framework for high-dimensional detectors based on machine
learning.

The game we introduce is characterized by Alice’s objective
to minimize the information flow to Eve. As the amount of
available information is endogenous in our setup, we do not
have discrete information sets like in classical game theory.
Our game might constitute a new class of games that could be
called information hiding games.
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APPENDIX A
PROOF OF LEMMA 2

Proof: We carry out the proof for P(y0). First, we insert
ā = 1 into Eq. (12), simplify, and then expand using Eq. (11):

P(y0)(u, v) =
t0

u+(−1)u · t1v

d0 · d1
. (43)

We use shorthand X0 ⊂ X for the set of all even elements in
X, and X1 = X \ X0. (The subscript indicates the LSB.) Now,
starting from the definition of KLD [2, for example]:

KLD(P0,P(y0)) =

=
∑
u∈X

∑
v∈X
P0(u, v) · log

P0(u, v)

P(y0)(u, v)
(44)

=
∑
v∈X

( ∑
u∈X0

t0
u · t1v

d0 · d1
log

(
t0

u · t1v

d0 · d1
· d0 · d1

t0
u+1 · t1v

)

+
∑
u∈X1

t0
u · t1v

d0 · d1
log

(
t0

u · t1v

d0 · d1
· d0 · d1

t0
u−1 · t1v

))
(45)

=
∑
v∈X

(∑
u∈X0

t0
u · t1v

d0 · d1
log

1

t0
+
∑
v∈X1

t0
u · t1v

d0 · d1
log t0

)
(46)

=
∑
v∈X

∑
u∈X

(−1)u+1 · t0
u · t1v

d0 · d1
log t0 (47)

= log t0 ·
1

d0 · d1
·
∑
u∈X

(−1)u+1 · t0u ·
∑
v∈X

t1
v

︸ ︷︷ ︸
=d1

(48)

= log t0 ·
1

d0
· (−1) ·

2`−1∑
u=0

(−t0)
u
. (49)

Now, using a closed form for the sum of the geometric series:

= log t0 ·
1− t0

1− t02` · (−1) · 1− (−t0)2`

1− (−t0)
(50)

= log t0 ·
t0 − 1

t0 + 1
. (51)

The proof for KLD(P0,P(y1)) is analogous.

APPENDIX B
PROOF OF LEMMA 4

Proof: False positives occur if decide classifies a symbol
drawn from f

(0)
ti as S (for stego).

αi =

2(`−1)−1∑
u=0

f
(0)
ti (2u)

Eq. (1)
=

2(`−1)−1∑
u=0

(ti)
2u

di
(52)

=

t2
`

i −1

t2i−1

t2
`

i −1

ti−1

=
ti − 1

t2i − 1
=

1

ti + 1
. (53)

False negatives occur if decide classifies a symbol drawn
from f

(1)
ti as C (for cover).

βi =

2(`−1)−1∑
u=0

f
(1)
ti (2u+ 1) (54)

We rewrite in terms of f (0)
ti (with the help of Lemma 1):

=

2(`−1)−1∑
u=0

f
(0)
ti (2u+ 1)

ti

Eq. (1)
=

2(`−1)−1∑
u=0

(ti)
2u+1

di · ti
.

(55)

After reducing ti from the right hand side of Eq. (55), the term
equals the right hand side of Eq. (52) and it follows that

AER :=
αi + βi

2
=

1

ti + 1
. (56)
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González, Eds., vol. 8389. Springer, Berlin Heidelberg, 2014, pp. 3–18.
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