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Abstract—This paper introduces a causal model inspired by
structural equation modeling that explains cyber risk outcomes
in terms of latent factors measured using reflexive indicators.
First, we use the model to classify empirical cyber harm studies.
We discover cyber harms are not exceptional in terms of typical
or extreme losses. The increasing frequency of data breaches
is contested and stock market reactions to cyber incidents are
becoming less negative over time. Focusing on harms alone
breeds fatalism; the causal model is most useful in evaluating
the effectiveness of security interventions. We show how simple
statistical relationships lead to spurious results in which more
security spending or applying updates are associated with greater
rates of compromise. When accounting for threat and exposure,
indicators of security are shown to be important factors in
explaining the variance in rates of compromise, especially when
the studies use multiple indicators of the security level.

Index Terms—cyber risk, security metrics, cyber harm, con-
trol effectiveness, science of security, causal model, structural
equation modeling

I. INTRODUCTION

Unsupported claims about the increasing risk of cyber
attacks pervade introductions to security talks and papers. Or-
ganisations are expected to invest more in security even though
research has inconsistently demonstrated how interventions
reduce risk. This state of affairs leads to perceptions that cyber
risk is more art than science.

With this in mind, our paper aims to systematise what is
known about quantifying cyber risk. Risk estimates can justify
additional resources for mitigation or be used to guide post-
incident response. The term cyber will bristle with many in
the security community. However, it is the concept of choice
for policymakers and business leaders who make many of the
decisions that security research should hope to influence. Such
decisions are premised on foundational questions like:

RQ1 How much harm results from cyber incidents?
RQ2 Which security interventions effectively reduce harm?
RQ3 Have these answers changed over time?
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Whereas security vendors scramble to provide self-interested
answers with shaky methodologies [7, 82], this paper finds
answers in empirical studies of real-world security outcomes.
We systemise the literature by using a causal model linking
latent variables for security, exposure, and threat to security
outcomes. The proposed model captures empirical cyber risk
research ranging from machine learning models predicting
web server compromise through to finance studies quantifying
shareholder losses resulting from cyber incidents.

We focus on classifying studies quantifying cyber risk in
organizations. The term cyber risk has two components, risk
describes possible negative consequences (harm) weighted by
the probability of occurrence. Cyber restricts our scope to
incidents caused by logical (as opposed to physical) force.
Under this definition a fire (physical force) in a data centre
(information harm) is not a cyber risk, whereas fire damage
(physical harm) caused by compromised control systems (log-
ical force) would be. Incidents within scope include denial
of service attacks, machine and web-resource compromise,
and organizational incidents. Associated harms range from lost
shareholder value to ransomware payments to wasted time.

Our literature search first identified relevant works in top
security conferences and the Workshop on the Economics
of Information Security. We used backwards and forwards
reference searches to identify additional relevant works until
saturation was reached. Doing so captured relevant studies
from disciplines including law, information systems, finance,
and physics. We included studies that empirically measure
real-world compromise or harm affecting organizations, which
is a minority approach within the science of security [60,
p. 12]. Studies providing promising ways of measuring secu-
rity, exposure or threat were also included even when harm
was not considered. We point readers to Anderson et al. [7]
for aggregate estimates of cybercrime costs, and Dambra et
al. [32] for cyber risk transfer research.

Section II introduces the causal model. Section III sur-
veys harm studies speaking to RQ1. Section IV identifies
mitigation studies that address RQ2. Temporal trends are
identified throughout (RQ3). Section V discusses progress
towards RQ1-3, model limitations, and future work.
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Fig. 1. The solid blue line fails to account for threat level, which may lead
the high-threat population to under estimate the effectiveness of security.

II. A CAUSAL MODEL OF CYBER RISK

Risk is unobservable but we can indirectly measure its re-
alisation as losses. Figure 1 uses artificial data to illustrate the
stochastic relationship; the highest observed loss has multiple
twins with similar security levels but much smaller losses.

Regression analysis is designed to explore relationships in
the presence of statistical noise. The Appendix contains a brief
tutorial on regression analysis but the confident reader may
continue. Putting measurement issues to one side, fitting a
linear model in which security is the only explanatory variable
(the blue line) suggests increasing security is associated with
greater losses. This result has been found empirically—higher
IT security budgets are associated with greater frequency of
data breaches [105]. Research designs based on observational
data are vulnerable to confounding variables and so we need
to add relevant variables to the regression model.

Adding threat level leads to a better fit (see the Appendix
for more detail) and provides insights into cross-dependencies.
In Figure 1, the green dotted line slopes downwards while
the red dashed line has a (not statistically significant) upward
slope, which suggests security only reduces harm when it is
implemented by the high-threat population. In fact, threat is
the only necessary condition for harm to occur. As such, secu-
rity should be conceptualised as moderating the relationship
between threat and harm, such that more security translates
into less expected harm.

The intuition that security effectiveness depends on the
threat level is baked into risk management. If security is
mitigation in risk management, then a third variable, exposure,
is analogous to the amount of risk acceptance. More exposure
means more vectors can be used to gain access (surface
exposure) and a greater value of assets can be compromised
(asset exposure), both of which amplify the effect of threat on
expected harm. Figure 2 represents the relationship between
threat level and expected harm as moderated by security and
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Fig. 2. A high-level causal model of cyber risk.

exposure. The notation E(+) denotes a positive relationship
in which more exposure amplifies the link between threat
and harm, and S(—) denotes a negative relationship. Many
research designs fail to account for all three variables.

Measuring these abstract variables is challenging in practice.
Reported losses ignore the full spectrum of harms [2] and harm
is often avoided thanks to luck alone. The effect of security
in moderating this stochastic relationship between threat and
harm is even more difficult to measure. No single indicator
captures the sum of preventive and reactive measures across
an organisation’s technology, processes and people. Modelling
security as a latent variable overcomes this issue by linking
noisy, observable indicators to the high-level concept.

Figure 2 shows this graphically as the latent variable for se-
curity has reflexive indicators 11,...,I;;, which can be measured
with m;. The arrows flow from security to the indicators I;
because the indicators do not cause security, rather the security
level influences the likelihood of a given measurement m;. The
latent variable must be inferred from these reflexive indicators.

Although Figure 2 describes the ideal research design,
relationships like S(—) can still represent statistical models
comprised of manifest variables in which variables like se-
curity or threat are assumed to be directly measurable. This
allows us to systematise a diverse body of literature on cyber
risk quantification and show which factors determining risk
outcomes are under consideration.

Very few studies directly link security interventions to
harm outcomes. It is useful to introduce a mediating factor,
compromise, which may or may not result in harm. Studies
investigating the effectiveness of security controls tend to
focus on an indicator of compromise without quantifying
the resulting harm, whereas studies quantifying harm tend
to sample exclusively from compromised entities. Doing so
cannot quantify how preventative security affects incident
likelihood as all firms in the sample were compromised. More
positively, such studies collect many harm observations and



can explore how harm varies based on the type of compromise
(e.g.ransomware strain [92]), which we denote with T|C.
Figure 3 shows the extended model using SEM notation.

To make this concrete, a 2017 study [115] is illustrated
on Figure 3 using red arrows and indicators [,. The authors
argue that although indicators of security (e.g. hiding version
numbers or the SSL configuration) correlate with less abuse
when aggregated across web hosting providers, these vari-
ables do not directly cause security improvements. Rather
the indicators are assumed to be reflexive indicators of an
unobservable security level. The authors [115] construct four
latent variables for preventive security S}, in order to explain
website compromise C' when controlling for surface exposure
E,. Table VI describes the technical indicators corresponding
to the latent variables.

The rest of this paper systematises literature on cyber risk
according to which of the relationships depicted in Figure 3
are explored. We focus on the statistical tests in the main
contribution and ignore preliminary results or tables. This
will be summarized in Table III. Our classification requires
a fair amount of interpretation because assumptions are often
unstated. For example, many data breach studies do not control
for the size or industry of the victim, which we suggest is
an implicit assumption that threat and exposure are constant
across the analysed (convenience) sample. We explain these
decisions throughout.

III. CYBER HARM STUDIES

The section speaks to the frequency and impact of cyber
harm (RQ1). Classifying harm research using Figure 3 will
reveal that these studies infrequently consider the moderating
effect of security (S, and S, in Figure 3). With this in mind,
a secondary goal is to identify which data sources could be
used by mitigation studies in future work.

Table I is an overview of empirical approaches to quanti-
fying cyber harm. Section III-A considers data sources that
collate public reports, whereas the studies in Section III-B
rely on researchers collecting private reports. Studies in Sec-
tion II-C extract data from publicly observable systems like
courts proceedings or stock markets. Section III-D considers
research into harms resulting from system wide events.

A. Publicly reported

Organisations report cyber incidents to the public for
both strategic reasons and compliance with reporting require-
ments [72]. Data brokers aggregate these reports to create pay-
for-access databases, with some exceptions like Privacy Rights
Clearinghouse providing free access. Large organisations are
over-represented because their reports are more accessible.

Data breach studies Data breach studies only sample the
sub-population of firms who have suffered a breach, which
means harm is conditioned on a breach occurring H|C.
These studies estimate how the number of breached records
is distributed. We do not count estimating the frequency of
breaches across the entire US as investigating the probability
of compromise since these estimates provide little information

TABLE I
OVERVIEW OF DIFFERENT APPROACHES TO QUANTIFYING CYBER HARM.

#of Econ Sample Earliest Earliest

Unit of analysis studies loss size study sample
Public reports (Section ITI-A)

Data breach X 600-6160 2008 2000

Operational loss 3 v 341-1579 2015 <2003

Cyber incident 1 v 2216 2016 2005
Private reports (Section III-B)

Internal incident 2 X 1800-23000 2010 1996

Insurance claim 1 X 70 2019 2015

Firm survey response 3 v 6644209 2012 2012

Individual survey response 5 v 1500-64287 2014
Externally observed (Section III-C)

Legal case 2 X 19-230 2011 1999

Legal case 1 v 118 2017 2010

Bitcoin transaction 3 v 10m 2014 2009

Criminal forum post 2 v 13m 2007 2006

Insurance prices 1 v 6828 2019 2007

Stock market reaction 19 v 43-542 2003 1988
System-wide harm (Section III-D)

Multi-party incident 1 v 800 2019 2008

to organisations without knowing the population of possible
victims [67]. Two studies [43, 125] addressed this by using
the population of listed companies to estimate probability of
breach, which is an indicator of C' in Figure 3.

Using the same public reports means each study can only
add data collected since the last study. Each researcher adopts
more sophisticated methods to justify publication. Breach sizes
were fitted with: just 1 parameter in 2010 [83], 2 and 3
in 2016 [36, 125], 6+ in 2018 [129], and the endlessly
flexible regression trees in a 2020 study [43]. On the one
hand, model sophistication identifies relationships that simple
analyses cannot, such as Xu et al. [129] showing that the
expected magnitude of the next breach increases with the time
since the last breach. On the other hand, the proliferation of
statistical tests leads to contradictory results (see Table II).

There is no consensus on whether breach frequency/size
are stable over time (RQ3). They were shown to be decreas-
ing/stable [40], stable/stable [36], increasing/stable [83, 129],
and stable/increasing [125]. Many of the contradictions can
be explained by how the data is sliced. Breach size was only
found to be increasing in malicious breaches [125, 126, 129]
but never for negligent breaches. Frequency was only found
to be increasing in the early years [30, 83] or in samples of
malicious breaches [23, 129].

In terms of RQ1, the shape parameter in the distribution of
breach size implies the expected number of breached records
is infinite in some studies [43, 83, 125] and finite in others [36,
129]. The possibility that the expected cost of a data breach
is infinite raises two problems. First, in reality the number of
breached records is bounded [125]. Second, it is unclear how
this maps to financial cost, which mandatory reporting laws
do not require organisations to publish. The Jacobs Transform
is frequently used to map the number of records to a financial
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Fig. 3. Describing the causes and correlates of cyber harm. The red arrows depict the model used by Tajalizadehkhoob et al. [115]. The blue arrows describe
a simpler model describing harm as indicated by I3 in terms of the type of compromise (/1) and an indicator of asset exposure (I2).

cost [23, 36, 40, 43]. This “transform” was derived in a blog
post in which the author warns the “amount of variance in the
model is a serious challenge to adoption” [66].

The predictive power of data breach studies is questionable.
In 2016, Edwards et al. [36] estimated that the probability of
seeing a breach of 200 million or more records in the next 3
years had a probability of around 0.1. Wheatley et al. [125]
derived a maximum breach size of 200 million, growing by
50% in the five years following 2016. Yahoo! reported the
loss of 3 billion customer records in the same year as both
publications (albeit lost years earlier). What do we really
know about data breaches when even methods designed for
tail events like extreme value theory [125] set bounds that are
exceeded by an order of magnitude within the same year (with
multiple breaches exceeding 500 million in the last 3 years)?
The same authors [125] who derived the maximum bound
warned about “dragon kings” [107] emerging from complex
systems that risk models cannot predict.

Operational loss Much like data breach studies, op loss
studies only consider harm H but in terms of financial
loss. Two studies [14, 41] control for indicators of exposure
E, like industry, revenue, and employee count. Surprisingly,
cyber operational losses are less heavy tailed than non-cyber
losses [14]. The mean loss is also smaller, which suggests
idiosyncratic cyber risk is not exceptional in the class of
operational losses. A 2019 study [41] supported the finding by
reporting that non-cyber losses had greater “mean, standard
deviation, median, skewness, and kurtosis”. However, the
authors report that the “tail risk measure” from [86, p.283]
is higher for cyber losses. This provides another example of
model sophistication leading to contradictory results.

The ORX database [102] used in these studies comprises
publicly reported operational losses. Larger organisations are
over-represented in the data as they are more likely to suffer
losses exceeding the threshold ($100k) and more likely to have
the loss reported by a “major media source” [102]. The key-

word filters used to filter cyber losses introduces additional
noise. Only 25% of the losses in the study [41] were classified
as data breaches, so what are the rest? It is hard to say without
access to the proprietary data, but the largest cyber loss ($14.4
billion) resulted from a “money-laundering incident at the
Bank of China in February 2005 [41, f.n.9]. If you squint
hard enough in the 21 century, anything can be a cyber loss.

Manually compiled The proprietary dataset used by Ro-
manosky [98] collected publicly reported incidents using
automated and manual methods. The results suggest cyber
incidents are “far less” [98] costly than losses like fraud,
theft, and bad debt when comparing medians and averages. In
terms of frequency, he observed that “Health Care and Retail
industries, however, suffer extremely low incident rates of
around 0.3% or less”. This is likely an under-estimate because
the numerator is biased towards large firms whose losses are
publicly reported, whereas the denominator captures all firms
in the US census classified into each industry. Normalizing a
sample of publicly reported incidents is challenging because
reporting biases are unknown and thus so is the population
from which the sample was drawn.

B. Privately reported

Privately reported data must be collected directly from
the organisation, which creates the opportunity to collect a
representative sample as in surveys. In contrast, case studies
collect a convenience sample using a relationship with one
firm, which calls into question how well the results generalise.

Case studies Time to repair following a system failure
is an indicator of harm H. Franke et al. [46] estimate the
distribution of times to repair and suggest exploring the factors
influencing this as future work. Schroeder and Gibson [104]
show that both time to repair and frequency of failure depend
on system complexity, an indicator of surface exposure Ej.
Both of these studies use internal data meaning n = 1 in terms
of organisations studied. The lack of consideration for security



TABLE II
THE OFTEN CONTRADICTORY FINDINGS FROM DATA BREACH STUDIES.

Breach frequency Breach size 00
Reference Type of data n Years Distribution Trend Distribution Trend Moment
Curtin et al. (2008) [30] N + M (USA) 899  2005-07 ? Va ? ? ?
Maillart et al. (2010) [83] N + M (USA) 956  2000-08 ? N Power law — Yes
Edwards et al. (2016) [36] N + M (USA) 2253 2005-15 Negative binomial — Lognormal — No
Wheatley et al. (2016) [125] M (World) 5365  2007-15 Poisson gen LM — (USA) DT exponential (t) N Yes*
Eling et al. (2017) [40] N + M (USA) 2266 2005-15 Negative binomial N Skew-normal — No
Xu et al. (2018) [129] M (USA) 600  2005-17 ARMA/GARCH ya Gen Pareto (t) — No
Wheatley et al. (2019) [126] N + M (USA) 1713  2005-17  Negative binomial — Pareto -, /M) ?
Carfora et al. (2019) [23] N+ M (USA) 5724 2005-17  Negative binomial S M) Skew/Lognormal ? No
Farkas et al. (2020) [43] N + M (USA) 6160 2005-19 Binomial ? Lognormal (t) ? Yes

N/M = Negligent/malicious breach, (t) = distribution of the tail, DT = double truncated, * = without maximum, ? = not reported.

is unsurprising given many failures are not malicious, but one
could imagine future work restricted to security failures.

The insurance industry seems well placed to quantify cyber
risk. Axon et al.[9] analysed 70 insurance claims from one
insurer and show that response services are the most common
costs. These insights are unlikely to generalise beyond firms
who buy insurance due to how insureds are encouraged to use
post-incident services [45, 127]. Axon et al.[9] provide no
quantitative estimates, likely because insurers believe claims
data constitutes a competitive advantage [127].

Survey data Victimisation surveys provide another window
into event costs. A survey [119] commissioned by the UK
Government quantifies the frequency and impact of cyber inci-
dents according to the firm size and industry, which constitute
simple estimates of £, — C and E, — H respectively.
Heitzenrater and Simpson [58] combine the survey [119] with
control effectiveness data to quantify the return on security
investment for commercial products like anti-virus or firewalls.

Consumer surveys of cybercrime are too numerous to ex-
haustively survey. Riek et al. [96] identify the most important
surveys [42, 56, 61, 97] in the US and the EU, which we
use to characterise the kind of insights to be gleaned. Self-
reported losses are used as an indicator of H|C' [56, 61, 97],
whereas the Eurobarometer [42] focuses on victimisation rates.
Security information is collected, such as security spend-
ing [96], identity theft detection methods [56], or anti-virus
installation [42], but not linked to harm outcomes. Estimates
of expected harm or frequency of compromise C' must be made
with reference to the population from which the sample was
drawn. Solving this issue with representative sampling results
in victims comprising a small fraction of the sample [44]. Riek
et al. [96] addressed both issues by over-sampling victims and
accounting for this with a reverse-weighting.

In terms of RQ1, Riek et al. [96] show that “most victims re-
port no losses, many lose little, and a few lose a lot” [96, p. 13].
Interestingly, Hernandez et al. [61] discover near identical
victimisation rates in the UK as compared with a comparable
US sample. Survey work emphasizes time costs in dealing with
the incident [96] and also maintaining security controls [58].

C. Observed externally

The remaining studies observe publicly accessible systems
without interacting with the organisation, which leads to
measurement bias towards what is observable.

Legal cases Legal systems are reasonably transparent.
Studies reveal factors determining the likelihood of breach
litigation in the US [99], the costs of regulatory fines in
the UK [25], and describe the evolution of the “security
requirements” in the FTC’s prosecutions [19]. The actual harm
is suffered by a third-party but these studies investigate the
defendant’s harm, in terms of costs assigned by court.

Romanosky et al. [99] discover no clear trend in the absolute
number of litigated data breaches from 2005 to 2010 (RQ3).
They identify a number of factors impacting the probability a
reported data breach will be litigated, such as the number of
records breached. In the UK, only a “small” fraction of public
breaches leads to fines [25], which average £110k of the £500k
limit that is now much higher due to GDPR. Such estimates
are limited to costs assigned by courts and regulators. Further,
legal cases take years to resolve which introduces logistical
difficulties in linking mitigation measures to legal outcomes.

Cybercrime ecosystem can be studied to extract indicators
of harm, such as the typical ransomware payment. Three stud-
ies [79, 92, 109] used this to estimate the rate of compromise
related to the CryptoLocker ransomware campaign varies over
time (7'). Two studies find that a specific ransomware cam-
paign displays significant temporal variance (RQ3). Paquet et
al. [92] include an additional 34 ransomware families, which
allows them to link harm to type of compromise indicated by
payment amount and the campaign. Such estimates are difficult
to link to the characteristics of the victim who suffered the loss
or the mitigation measures employed.

Although not speaking to harm to specific victims, research
directly measuring threat actors can be used to estimate ag-
gregate costs of cybercrime. Data breach harms to consumers
can be observed at the point at which stolen data is sold, such
as by monitoring public channels [47, 117] or by infiltrating
private forums [4]. These markets are noisy, which may lead
to exaggerated cost estimates [59]. Diffuse harms related to
spam [75], unlicensed pharmacies [73, 85] or ransomware-



at-scale [63] can be more reliably quantified at the source,
namely the criminal operation. Interested readers should refer
to Anderson et al.[7] for a definitive survey.

Insurance prices A sub-population of insurers file their
pricing schemes with a regulator [100]. Woods et al.[128]
extract these prices and show cyber insurance premiums trend
downwards from 2008-2018 (RQ3). They also introduce a
method using these prices to quantify expected loss (RQ1).
The method, which is analogous to model stealing [118], infers
a loss distribution based on how the quoted premium varies
with changes in the amount of insurance.

Stock market reaction studies quantify harm to sharehold-
ers as indicated by abnormal returns. All studies control for
exposure F, via victim industry or size. In terms of RQI,
perceptions of the economic impact of data breaches on stock
market value have been characterised as “Much Ado about
Nothing” [95], but this has a temporal dimension (RQ3). Both
Gordon et al. [53] and Gay [51] provide evidence market
reactions are becoming less negative over time. Figure 4 shows
the decreasing effect by means of a meta-study.

Later studies suggest that corporate leaders learned how to
mitigate the negative stock market reaction after a breach had
occurred. Board-level incentives mean costlier attacks are less
likely to be disclosed [5] and, when they are disclosed, the
negative reaction is offset by the strategic release of positive
news [51]. Two studies provide evidence of insider trading [29,
80], which undermines the methodology because the abnormal
trading following a breach is not concentrated in the event
window following public disclosure.

Stock market reactions could lead corporate leaders to divert
more resources to security following an incident. A reduced
negative shock is associated with breach disclosures that com-
mit to “action-oriented” measures to improve security [123]
and faster breach discovery [68]. Perhaps more importantly,
victims are more likely to increase board oversight of cyber
risk post-incident [68], which may lead more resources to
be assigned to security. Markets reward news about security
investments regardless of whether a breach occurred. Display-
ing cybersecurity awareness [11] or certifying to international
standards [33, 93] leads to positive returns.

D. Correlated risk

Focusing on individual losses ignores what is perhaps the
most extreme aspect of cyber loss-correlation across firms.
Events impacting popular software and cloud providers may
cause losses across many firms. The Morris worm infected up
to 10% of the devices connected to the Internet in 1988 [67].
More recently, the NotPetya attack exploited a flaw in Win-
dows to cause an estimated $10 billion of damage across
hundreds of companies [28, 54].

Multi-party incidents An industry report [31] extracted
over 800 multi-party cyber incidents causing 5,437 distinct
losses from the same proprietary source as [98]. This approach
focused on harm premised on a multi-incident party occurring
and how this varied by industry. The median and 95" per-
centile of multi-party incident losses ($1m and $417m) were

an order of magnitude larger than for single-party incidents
($77k and $16m), although these figures are not normalised
by the number of affected firms. Curiously, their data shows
a cluster of three losses at the maximum value in the sample.

E. Summary

Data breaches and stock market reactions have received the
most research attention. Market reactions became less negative
over time [51, 53] (see Figure 4) as firms learned how to
manipulate announcements [5, 29, 51, 80]. Table II shows
many contradictory results about data breaches depending on
how the data is sliced and the analysis methodology. Even
more worryingly for the data breach studies, Eling et al. [41]
show the distribution of number of records does not transfer
to that of financial costs [41].

A minority of studies [14, 41, 98] quantify financial costs
and find typical cyber risks are smaller and less heavy tailed
than non-cyber losses. Surveys of firms [13, 58] and individ-
uals [96] reveal less alarming harm estimates. The maximum
loss in a survey [58] of small UK businesses was £310k
($410k), whereas an op loss database’s mean was $43m [41].
This points to jurisdictional differences and the most worrying
aspect of this section—cyber harm estimates are not consistent
across samples or statistical tests.

IV. CYBER RISK MITIGATION STUDIES

This section is concerned by empirical studies of how
security controls affect outcomes in real systems. Inductive
security proofs and attack papers that only demonstrate an
attack is possible are out of scope.

We proceed by highlighting promising ways to quantify
latent variables, known as measurement models. Measure-
ment models for threat, security and exposure are covered in
Section IV-B, Section IV-A, and Section IV-C respectively.
Finally, Section IV-D identifies the holy grail—research in-
vestigating the structural links between these variables. We
classify research using the causal model throughout, which is
summarized in Section IV-E and Table III.

A. Measuring security

A measurement model reduces a set of indicators to a
lower dimensional output that can be used to explore structural
relationships between latent variables. This subsection covers
security measurement models based on single indicators, self-
reported indicators, and researcher intervention.

Single indicators Certifications are designed to reduce or-
ganisational security to a pass-fail test. Cybersecurity certifica-
tions were associated with positive stock market reactions [33,
93]. Yet no study demonstrates that certification is linked
to better risk outcomes. Selection effects are pervasive as
market incentives distort seemingly reliable security indicators.
Firms look for auditors with the least stringent requirements
when certification is mandatory, which creates a race to the
bottom [6, 74]. Optional certification is no better, websites
certified by TRUSTe were shown to be more than twice as
likely to be untrustworthy as uncertified sites [35]. More
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recently, Rahman et al. [94] showed that 86% of websites
violated at least one of the requirements in the PCI-DSS
standard they were certified to.

Looking elsewhere, one might expect security budgets to
function as a crude indicator of security. We already iden-
tified how higher IT security budgets are associated with
greater frequency of data breaches [105]. Security budget is
likely tracking a hidden variable for risk exposure, such as
organisation size since both breach frequency and size “scale
with organisation size” [126, p. 11]. Even when controlling for
firm characteristics in a logistic regression, Biancotti [13] find
that defense expenditure in 2016 is positively correlated with
the probability of experiencing an incident in 2017. Potential
explanations for this result include: not controlling for threat,
using weak indicators of exposure, organisations spending
resources inefficiently, or accounting tricks like re-assigning
existing costs under the security budget.

Self-reported indicators Discovering one indicator of se-
curity with wide predictive power is unlikely, which motivates
collecting multiple indicators. Egelman et al. [38] developed
the Security Behavior Intentions Scale (SeBIS) in which a
user’s answers to 16 questions map onto four aspects of
security behaviour with desirable psychometric properties. The
sub-scales were shown to predict end-user behaviour [39, 103]
but were not linked to harm outcomes. Sawaya et al. [103]
show the scale does not “generalize” across cultures.

We are not aware of a similar scale for organisational
security, though research from information systems uses ques-
tionnaire responses to explain security outcomes. In a seminal
1990 study, Straub [112] used a survey of 1,211 organisations

to measure latent factors related to organisational commitment
to security. The model showed organisational commitment to
security correlates with better self-reported harm outcomes,
such as the frequency and cost of incidents. Adding rival expla-
nations like preventative measures did not improve the model,
although the indicator—the number of security software pack-
ages in use—was weak. Organisations connecting networks to
the Internet since this study enables direct measurements that
avoid self-reported data [37, 81, 89, 101].

Researcher intervention The preceding studies simply
observe security levels, whereas notification studies allow
the researcher to randomly assign which subjects receive the
intervention. Stock et al. [110] show that when notification
reports reach the website owner, the related vulnerability has a
40% likelihood of remediation. The authors do not link the no-
tification to harm or compromise outcomes, which is also true
for studies notifying vulnerable name-servers [26], misaligned
firewall policies [77], and HTTPS misconfiguration [130].

Notifying subjects who have already been compromised
allows researchers to quantify the impact of a form of reactive
security S,.. Vasek et al. [121] show that notifying hosting
providers reduces time to clean-up malware URLs from 153
days to 101 days. Similarly, Li et al. show “direct communi-
cation with webmasters increases the likelihood of cleanup by
over 50% and reduces infection lengths by at least 62%” [78].
The authors additionally control for indicators of exposure like
site language or popularity and show that less popular sites are
associated with longer infection periods.

Summary Single indicators like security budget or certi-
fication should in theory summarize organizational security



and hence explain security outcomes. In reality, they are
vulnerable to selection effects and manipulation. Self-reported
indicators successfully explain security outcomes [39, 112]
but are costly to collect. Studies collecting technical indica-
tors [37, 81, 89, 101] can be more easily scaled. These studies
are described in Section IV-D as they investigate the full causal
model. Notification studies allow the researcher to control the
security level and more confidently identify causal effects.

B. Measuring threat

The presence of active adversaries is a unique aspect of
security research [60]. We identify approaches to controlling
for threat level that vary across: time, target, and researcher
intervention.

Time Empirical observations of malicious activity can be
aggregated over time to track the changing threat level [70,
Fig.2-3]. Alternatively, expert sentiments can be tracked over
time [52]. This provides longitudinal insights but the aggregate
index does not speak to heterogeneity across organisations.

Targets Studying attackers in-the-wild can identify variation
in targeting by threat actors. Tajalizadehkhoob et al. [113]
analysed around 150k Zeus malware configuration files col-
lected by a managed service provider. They show that just
175 of 6,500 financial institutions were targeted, of which
larger banks were disproportionately represented. Similar stud-
ies identify factors affecting victimisation rates for DDoS
amplification attacks [90] and phishing emails [106]. Simoiu
et al. [106] find that user adoption of 2-factor authentication
or a recovery mechanism is positively associated with phish-
ing targeting, which provides another example of a spurious
relationship. Criminals do not seek out victims with greater
security, rather victims likely to be targeted by criminals are
also more likely to employ security measures.

An even more fine-grained measurement involves detecting
denial of service (DoS) attacks in the back-scatter of internet
traffic. Moore et al. [87] described this approach to estimate
the frequency, severity, and duration of DoS attacks. The
method identifies which exact IP addresses were targeted.

Researcher intervention Simulating the attacker as part
of an experiment provides complete control over the threat
level of each subject in a laboratory setting. For example, Cai
and Yap [20] study Android anti-virus (AV) app effectiveness
using 200 known malware strains. In the causal diagram,
this experimental design investigates how compromise C' is
determined the installed app, varying S,, when exposed to the
same malware samples 7.

Ecological validity is questionable in this research de-
sign because the authors only used “sufficiently old” mal-
ware samples that were “detected by at least 40 out of 57
AVs” [20]. This means the study over-samples detectable mal-
ware, whereas rational attackers deliberately use undetectable
malware. This can be addressed by collecting malware samples
via honeypots [16, 48, 49]. The question remains as to whether
failing to detect a malware sample translates into harm or even
meaningful compromise.

Summary A unifying approach to controlling for threat is
unlikely to be found. Although bigger targets tend to face a
greater threat, many DoS attacks on home machines constitute
“relatively large, severe attacks with rates in the thousands of
packets” [87, p.133]. Research designs should consider the
specific form of cyber attack when deciding how to control
for varying threats.

C. Measuring exposure

Constructing a measurement model for exposure seems
intuitively simple because exposed assets are also exposed
to measurement. Selecting the unit of analysis and the right
number of variables are challenging.

Unit of analysis Stone et al. [111] tried to shame careless
hosting providers by creating a ranking of the amount of
persistent maliciousness. Hosting providers were associated
with an autonomous system (AS), which functions as the
technical unit of analysis. Tajalizadehkhoob et al. [114] argue
this is a bad approach because some providers share ASs and
others operate multiple ASs. The authors provide an alternative
way forward by building a costly mapping from IP addresses
to 45, 358 hosting providers [116].

Variables The number of IP addresses associated with a
hosting provider has been used to control for exposure [111,
131], but is this enough? Tajalizadehkhoob et al. [116] show it
can explain 20% of the variance in phishing abuse associated
with each hosting provider. This rises to 84% when three
additional variables related to the size and business model of
the hosting providers are added to the model. The majority
(77%) of the remaining 16% of variance can be explained by
including variables related to pricing and the ICT index of the
hosting provider. This leads the authors to ask: if so much can
be explained by exposure alone, what are we studying when
we study abuse?

The explanatory power of exposure is further demonstrated
by Soska and Christin [108]. They trained a classifier to predict
whether a website will become malicious C, which achieves
66%/17% true/false positive rates. The features are all based
on the website’s content and traffic statistics, both of which
represent indicators of exposure E,. A powerful aspect of
their research design is that features can be gathered after
compromise has been observed thanks to “an archive of more
than 391 billion web-pages saved over time” [108].

Summary The explanatory power of exposure can be easily
underestimated when omitting relevant variables or using the
wrong unit of analysis. Going from one to four indicators of
exposure in hosting providers led to a four fold increase in
explanatory power [116]. Many of these variables were only
available because the authors focused on hosting providers
rather than relying on flawed proxies like measuring the num-
ber of IPs at the associated AS [114]. Beyond organizations,
Canali et al. [22] show indicators of exposure like the amount
or time of web-browsing impact compromise outcomes.

D. Structural relationships

The previous subsections described different measurement
models for latent factors. This section identifies research



TABLE III

SYSTEMATISATION OF CYBER RISK QUANTIFICATION BY INVESTIGATED CONSTRUCT OF THE CAUSAL MODEL.
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Each study 1s classified according to our causal diagram (size due to space constraints) and then a category. We include the venue
and year of publication in the fourth column. The fifth column describes the time period of the sample. Blue = Computer science,
Red = Big four security conference, Orange = Inter-disciplinary CS, Green = Finance and Management, Grey = Miscellaneous.
 denotes the type of threat conditioned on compromise T'|C.



designs investigating the relationship between these latent
factors. We point the readers back to previous descriptions
of studies using latent models of security to explore structural
relationships [112, 115] and turn to unidentified approaches,
which break down into: between-subject, within-subject, and
multiple indicator research designs.

Between-subject designs compare outcomes for subjects
with differing levels of security. Edwards et al. [37] use this
approach to study botnet infections across organizations with
different security levels. They fit a linear model with variables
like available network protocols and TLS configuration and
certificate weaknesses. Training a separate model for each
industry achieves the best balance between complexity and
goodness of fit according to the chosen criteria. In some
industries TLS certificate errors and misconfiguration were
associated with less compromise [37]. The only consistent
effect related to whether peer-to-peer file sharing was blocked.

At the level of web servers, Vasek et al. [120] use a case-
control design to explore factors influencing the likelihood of
a web server compromise. The authors discover evidence that
running up to date software S, “may actually put webservers at
greater risk of being hacked” [120, p. 8]. This ‘more security,
more compromise’ relationship likely resulted from sampling
relatively many low-threat, low-security websites who only
have low compromise rates because they are not targeted.
Evidence in support of this is provided by restricting the
sample to servers that have already been compromised, which
is an indicator for high threat. After doing so, the authors
observe a smaller fraction of updated websites (22.6%) are
re-compromised than the fraction of sites that never update
(33.5%). This suggests more security is associated with lower
rates of compromise only in the high-risk population.

Within-subject designs track the same subject’s security
level over time using longitudinal data. Nagle et al. [89] fit a
fixed-effect regression model using 33 million security events
occurring at 480 enterprises collected by a security monitoring
company. The number of open ports, which serves as an
indicator of (the lack of) security management effort S, has a
statistically significant effect on three of the four indicators of
compromise C. The authors suggest the failure to establish
an effect on the fourth indicator despite 33m observations
results from the sparsity of observed malware infections.
Such imbalances are common in samples collected from a
population of firms before a breach has occurred—subsequent
compromise and harm are (fortunately) rare exceptions.

Technical indicators A group of researchers used network
scans to predict cyber risk outcomes in a cluster of related pub-
lications.The first study [131] identified a correlation between
indicators of mismanaged networks S, and malicious activities
C emanating from the corresponding AS. The indicators of
mismanagement are all normalised for exposure FEs. They
also control for social and economic factors using a method
designed to capture latent factors. The authors identify a
statistically significant correlation between network misman-
agement and network abuse. A metric aggregating all the
individual symptoms had the strongest relationship [131, p. 8]

highlighting the value of combining multiple noisy indicators.

A later publication [81] reformulates cyber risk forecasting
network as a classification problem on an IP block. Blocks
were labelled as breached using a set of a thousand incidents
from various sources and then finding the victim’s IP block.
The data labelled as not breached is created by sampling from
the remaining IP space, which “is broken, by ownership (or
LACNIC prefixes), into 2.9 million sets” [81, p. 1013]. The
feature space includes indicators of security S, and exposure
E, like mismanagement symptoms and the number of IP
addresses. The authors argue “independence of the features
from ground-truth data is maintained” [81, p. 1011] despite
using the number of blacklisted IPs on the network as a
feature. This is arguably using an indicator of compromise to
help predict another indicator of compromise, but we interpret
this as an indicator of increased threat level 7.

A similar research design takes a sample of incidents, links
these to a the victim’s website domain, and labels these
as breached domains [101]. The non-breached domains are
sampled from “the largest publicly available directory of the
Web” [101]. The studies achieve similar true and false positive
rates (90%/10% [81] and 90%/11% [101]).

Both studies use an artificial case control by drawing la-
belled and unlabelled data from different populations; the cases
labelled as breached are all drawn from the population of firms
who have publicly reported a breach, mostly large corporations
(see Section III). Whereas, the cases labelled as unbreached are
drawn from a population of IP blocks or domain names that is
not dominated by large corporations. The algorithms are likely
detecting the difference between a large corporate network
and a random web server, not the difference between large
corporations according to the likelihood of breach. The fix,
constructing control population from a similar population to
the breached firms, is easier to state than to solve. A statistical
twins approach was used to construct a homogeneous sample
of hosting providers [116] but this must be done without
ground-truth on the relevant dimensions of similarity.

End-user studies Although we have focused on organi-
sational risk in this paper, research into individual devices
and their users supports our narrative. Simple correlations
reveal that end-users with ‘computer expertise’ [71] or that
use the Tor browser [34] are associated with increased rate of
compromise. The authors of both papers reject the existence
of a causal link and raise the possibility of confounding
variables. Bilge et al. [15] include indicators of exposure in
a model using random forests to predict device compromise
and discover that applying security patches is the third most
important feature (after two indicators of exposure).

Summary Applying between-subject research designs with
single indicators of security lead to spurious results where
more security is associated with more compromise [37, 120].
Adding control variables or using within-subject designs
corrects the issue. The relative infrequency of compromise
undermines statistical power leading to null results even with
33m observations of the security level [89].

Constructing latent factors for security provided more ex-



planatory power than any single indicator in two studies [115,
131]. Although the learning representations are not explicitly
latent, the success of applying random forests to predict
incidents for organizations [81, 101] and machines [15] further
supports our call to move away from explanations based on
single indicators. Such models requires additional reporting to
understand how security interventions affects the probability of
compromise. Regression models became popular in the social
sciences precisely because such effects are easily interpreted,
even at the cost of predictive power.

E. Systematization of cyber risk research

Table III summarises our systematization. The first column
visualises the relationships explored in the corresponding
study, we see that the first block of diagrams, predominantly
‘traditional’ security research, have used relatively short sam-
ple windows. This can be contrasted with the harm studies (the
second block) that explore longitudinal trends using databases
aggregated by third parties.

The fourth column shows the diversity of venues for cyber
risk research. Colour coding according to discipline shows
cyber harm has mainly been explored in the finance (green)
and interdisciplinary venues (orange). The top security confer-
ences (red) focused on quantifying threat and security without
considering structural relationships, putting aside a few recent
exceptions. With the exception of Straub’s seminal work in
1990 [112], research designs exploring multiple structural
relationships have predominantly emerged in the last 6 years.

V. DISCUSSION

We now return to each of our research questions.

A. RQI: How much harm results from cyber incidents?

Data breaches in the US are the most studied incident
because aggregated public reports are ripe for statistical anal-
ysis. Each study brings a new statistical approach leading
to contradictory claims about the same dataset. This can be
contrasted with experimental science in which each study
collects additional data, applies similar statistical tests, and the
field builds knowledge via meta-analyses. As a result, we have
learned little about data breaches despite 10 years of analysis.
We can at best agree that the number of records breached is
heavy tailed, though this says little about financial cost [41].

Harm estimates are inconsistent across samples, reporting
standards, and jurisdiction. The mean loss in a sample of
global op losses extracted by text-mining [41] differs by an
order of magnitude ($43m to $4.1m) when compared with a
manually collected sample of public reports [98]. Estimates
vary further across jurisdictions, only 0.1% of Italian firms
suffered a loss greater than €200k in a 2016 survey [13]. This
finding resulted from a stratified random sample collected by
the Bank of Italy, which leads us to ask why so few indepen-
dent statistical agencies employ their considerable expertise in
collecting cybersecurity data?

Perhaps cyber risk is simply not that harmful [91]. Certainly
when compared to the breaches reported in the media, typical

breaches are smaller and less heavy tailed [43]. Typical
financial costs are less than fraud, bad debt, or retail theft [98],
and cyber operational losses are both less on average and less
heavy-tailed than non-cyber losses [14]. The lack of empirical
support for the claim that cyber risk is exceptionally harmful
casts doubt over the attention seeking assertions that pervade
introductions to security papers and talks. These studies and
our causal model are inadequate to provide evidence about
systemic risk (alternatives are discussed in Section V-D).

B. RQ2: Which security interventions effectively reduce harm?

Our contribution is a framework to evaluate answers to
this question. Actionable answers are unavailable based on
current evidence. Simple statistical tests lead to spurious
results like greater security budgets [13, 105], greater computer
expertise [71] or updated software [120] being associated
with greater frequency of compromise. The direction of such
associations can be reversed by adding control variables [120].

Turning to the explanatory power of each latent factor,
just using indicators of exposure can predict which websites
will turn malicious [108] and explain most of the variance
in abuse [116]. In contrast, indicators of security have little
explanatory power alone. Liu et al. [81] re-train their model
using each subset of the feature space alone and discover
security mismanagement features “perform the worst” [81].
Yet when removing each from the full model, removing the
subset of security indicators leads to the biggest decline in
performance. This supports the fundamental intuition behind
our causal model: security only explains harm outcomes when
indicators of threat and exposure are added to the model.

Prioritising security interventions based on these studies is
foolish. The best statistical models in terms of explanatory
power measure security using multiple indicators [81, 112,
115]. Such approaches cannot isolate the effect of individual
controls, let alone establish causality. Linking to policy, pre-
scriptions in cybersecurity laws must be balanced against the
lack of evidence on the effectiveness of specific prescriptions.

A promising development is notification studies [78, 120] in
which security interventions can be randomly assigned outside
a laboratory setting. Detected effects can reasonably be said
to have been caused by the intervention. Adopting similar
randomized control trial designs seems promising given their
success in economics. With the power to randomly assign
security interventions comes great ethical responsibility [88],
which is compounded for researchers contemplating interven-
tions related to threat actors [75, p.9].

C. RQ3: Are these answers stable over time?

Harm studies have longer sample windows, approaching 20
years in some cases, than mitigation studies (see Table III).
Data breaches are not increasing in frequency in general [36,
126] but they are increasing in both size and frequency if the
sample is restricted to malicious breaches [126, 129]. The price
of cyber insurance trended downwards from 2008-2018 [128],
although this has more to do with market dynamics than
decreasing risk. In terms of shareholder value, the effect of



breach disclosure seems to be decreasing over time. The timing
of this shift (2001 [53] and 2005 [51]) is curiously close to
when mandatory data breach notification laws came into effect.
One explanation could be that post-2003 samples contain more
inconsequential breaches that would not have been discovered
beforehand and these drown out the effect of large breaches,
which are shown to have the biggest impact on stock prices [5].

Sample windows in mitigation studies are too brief to
learn about the effectiveness of security interventions over
time (see Table III). For example, cyber incident forecasting
performance holds when moving from a “one-month to a 12-
month forecasting window” [81, p. 1019] but the researchers
can test no further. This is partly explained by disciplinary
norms around self-collected data and the availability of data
brokers. Funding agencies might consider how to support
institutionalized data collection and sharing as exemplified by
the Cambridge Cyber Crime Centre [27].

Balancing the admittedly limited evidence, there is little
to suggest cyber harms are particularly unstable. This is
consistent with similar studies of cybercrime in which global
aggregate losses were in the same order of magnitude between
2012 [7] and 2019 [8] despite criminals innovating in methods.

D. Limitations

The causal model says little about other valuable approaches
to security research, such as qualitative methods, that capture
the subtleties of organizational security [10]. Within quantita-
tive empirical research, limitations can be distilled into those
of the model and more fundamental unknowability.

Model Limitations The causal model is intended for obser-
vational studies of cyber risk in organizations. This does not
apply to research designs manipulating the security level as in
notification studies. Law enforcement interventions cannot be
studied by the model in its current form and must be treated
as exogenous shocks impacting the threat level.

Our language often invokes linear relationships between
variables, which does not reflect a naive belief that the world
follows such models. Generalized linear models could be used
to account for the non-linear distributions of harm identified
in Section III. Many authors opted for ML models instead
of regressions. Although we suggest prediction rates are less
interpretable than regression tables, the important properties
of the causal model (e.g.variables for threat and exposure,
multiple indicators) are present in ML studies.

Systemic cyber risk, however, requires a fundamentally
different modelling approach because there are not enough
observations for ML models or reduced form regressions.
Knowledge about the loss generation process could be used to
create structured models that require less data. For example,
correlations in the attacks observed by Honeypots could pa-
rameterize correlations in risk models [17]. This topic is being
considered by the finance community who consider how cyber
risk poses a unique threat to financial stability [57, 124].

Unknowability Creating knowledge about cyber harms and
possible mitigation measures depends on available data. The
size of a data-set is not everything. Samples must also be

TABLE IV
SYSTEMATISATION OF CYBER RISK QUANTIFICATION BY CATEGORY.
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representative of the broader population of interest. In terms
of raw numbers, the surveyed studies analysed: 5000000
webpages [108]; 200000 webservers [120]; 45000 hosting
providers [116]; 15000 end-user devices [34]; 600 victims
of malicious data breaches [129]; and 265 victims of data
breaches with financial cost [98]. Greater transparency is one
issue to overcome [7] but improvements are bounded by
the absolute number of events. Sub-components of complex



systems like web page compromise are easier to study than
emergent effects like firm-wide losses. This issue is partic-
ularly pressing for systemic risk, for which there are no
empirical results. Detailed case-studies of the WannaCry and
NotPetya incidents are an obvious starting point.

A second issue relates to social actors becoming aware
of metrics. The signalling value of security certifications
is eroded by market dynamics [6] and by selection ef-
fects [35]. Event window studies are undermined by strate-
gically releasing positive news [51], withholding the most
costly breaches [5], and by insider trading [80]. Such exam-
ples highlight Goodhart’s law in which security metrics are
optimized at the cost of actual security. A related problem is
researcher measurements distorting other measurements, such
as when network scans for research purposes are interpreted
as an attacker probing for vulnerabilities [55].

Finally, data is political. Inferred causal relationships may
not generalise beyond the population of study, such as across
cultures [103], and this can lead to flawed (possibly harmful)
recommendations. Harm estimates inevitably ignore certain
victims and types of harm [76], such as individuals lacking
the resources to quantify and communicate their harm. The
‘cost of a data breach’ skews towards direct costs to the firm
as determined by accountants and not indirect harms suffered
by victims of identity theft.

E. Future work

Throughout we have argued that the causal model (Figure 3)
is the best statistical approach to quantifying cyber risk.
However, this risks the naive takeaway that ‘investigating
more causal links is always better’, which we do not endorse.
Investigating the full causal model is an ambitious research
design and often relies on prior work constructing measure-
ment models for individual variables. Table IV is arguably
more useful for funding agencies to distribute attention.

Our systemization can both classify existing studies and
show which studies are yet to be conducted. Table IV shows
no data breach study has linked C' or H to an indicator
of security. There are reasons for this. Collecting data from
sufficiently many breached firms before it is known which
will be breached requires large samples, otherwise the sparsity
of observed compromise undermines statistical tests [89]. A
solution is to obtain explanatory variables after compromise
has been observed. For example, Soska et al. [108] use the
Internet Archive to collect historical website content.

More generally, future work should aim to quantify the
relative effectiveness of different forms of security. Recent
work identifying a statistical relationship between security
measures and the prevalence of compromise marks progress
since a 2009 critical review [122], but only a minority of
these results speak to prioritization. An example of the latter
is evidence that hosting providers’ security efforts “play a
more significant role in fighting phishing abuse” [115, p. 13]
than those of web masters. However, the authors warn against
causally interpreting the effect of individual indicators.

VI. CONCLUSION

This paper systematises empirical research into cyber harm
estimates and the effectiveness of security interventions. In-
spired by structural equation models, we introduced a model
explaining security outcomes using latent factors for security,
exposure, and threat. The moderating role of security would
ideally be measured using many reflexive indicators without
necessarily identifying causality. Our survey of empirical cyber
harm estimates finds little evidence that either the typical size
or variance of cyber harm is particularly exceptional, but these
studies do not consider the role of risk mitigation.

Applying the model to risk mitigation studies shows that
threat level is often omitted. Indicators of exposure have good
explanatory power in terms of cyber risk outcomes. Statistical
tests that do not control for either factor lead to spurious results
like increased security budgets leading to greater frequency
of breach [105] or that applying software updates increases
the likelihood of web-server compromise [120]. Studies that
account for all attributes show security is a powerful de-
terminant of cyber harm outcomes; indicators of network
misconfiguration are the most important features in classifying
whether an organisation will suffer a cyber incident [81].

Turning to the question of what risk science has to tell
business leaders, firms should not underestimate the risk
flowing from unnecessary exposure given its predictive power
regarding multiple forms of compromise. In terms of risk mit-
igation, vendors promising simple solutions (single indicator
explanations) should be ignored and security teams should
be equipped with the resources to focus on the diversity of
tasks that avert cyber harm. Policy makers’ attention should
be shifted away from typical losses, which are not exceptional,
and towards systemic risk that we simply know nothing about.
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APPENDIX

Throughout model parameters are estimated to minimise
squared residuals. Regressing losses L on the security level
S in the artificial data in Table V reveals that

L ~0.11 + 0.32*S )

A positive coefficient for S means increasing security level is
associated with an increase in loss. Further, the coefficient is
the slope of the solid blue line in Figure 1. The * means
the coefficient is statistically significant at the p < 0.05
level. Security is associated with greater losses because the
high-threat population spend more on security and also suffer
greater losses. However, controlling for threat by re-estimating
the model in the high-threat population (7' = 1), we see that

L ~0.63 —0.59*S 2)

Security now has a negative coefficient, as we would expect,
and is statistically significant. Conversely, security has no
significant effect in the low-threat population (7" = 0).

L~0.03+0.058 3)

The coefficients in (2) and (3) correspond to the slopes of
the dotted green and dashed red line in Figure 1 respectively.
It is evident that the threat level causes losses, and security
moderates the effect of threat on losses.

This effect can be captured using an interaction between S
and T so that

L~0.03+06"T+40.055—-06"TxS “)

In Model 4, threat is strongly significant (p < 0.001) and pos-
itively associated with losses. Increasing security in the low-
threat population leads to a small increase in losses, although
this relationship is not statistically significant. Whereas, the
same increase in the high-threat population leads to a relatively
large decrease in loss (—0.56 vs +0.05) and this is statistically
significant. The interaction term 7" x S captures the intuition
that security moderates the relationship between threat and
losses.

TABLE V
ARTIFICIAL DATA USED FOR THE EXAMPLE IN FIG. 1

Low-threat (1" = 0) High-threat (T = 1)

Security S Loss L Security S Loss L
0.06 0.00 0.37 0.56
0.08 0.00 0.57 0.54
0.65 0.00 0.35 0.73
0.01 0.20 0.73 0.38
0.29 0.50 0.38 0.25
0.13 0.00 0.47 0.40
0.59 0.00 0.47 0.46
0.00 0.00 0.57 0.30
0.37 0.00 0.90 0.00
0.23 0.00 0.70 0.23
0.00 0.00 0.35 0.68
0.15 0.10 0.21 0.57
0.00 0.00 0.43 0.32
0.08 0.00 0.20 0.56
0.21 0.00 0.29 0.40
0.01 0.00 0.40 0.13
0.11 0.00 0.29 0.27
0.00 0.00 0.58 0.43
0.01 0.00 0.48 0.05
0.24 0.00 0.46 0.21

TABLE VI

TECHNICAL INDICATORS [115] CORRESPONDING TO I IN FIGURE 3

Technical indicator

Ic, # domains in phishing blacklist
Ic, # domains in malware blacklist
Ip, # IPs on shared hosting

Ig, # domains on shared hosting
Is, HTTP server version

Is, SSL version

Is, Admin panel version

Is, PHP version

Is, OpenSSH version

Isg CMS version

Is, HttpOnlyCookie

Isg X-Frame-Options

Is, X-Content-Type-Options

Is,,  Mixed-content inclusions

Is,;  Secure cookie

Is,, Content-Security-Policy

Is,;  HTTP Strict-Transport-Security
Is,,  SSL-stripping vulnerable form
Is,;  Browser XSS protection

We can evaluate the fit of each model using the coefficient of
variation R?, which describes the proportion of the variance
explained by the model. Model 1 only explains 10% of the
variance, whereas Model 2 and Model 4 can explain 21% and
58% respectively. Model 3 explains nothing. R? values are
adjusted for the varying number of parameters. It is impossible
to explain all of the variance (R?> = 1) with a linear model,
given that the underlying data generation process is non-linear.

Structural equation modeling generalises this logic to allow
for multiple moderating factors. Moreover, it considers explicit
measurement models which estimate these structural relation-
ships between latent constructs interpolated from multiple
noisy indicators.



